Java"” Servlet Programming

THE

JAVA.
SERIES

Exploring Java"
Java" Threads
Java" Network Programming
Java” Virtual Machine
Java” AWT Reference
Java"” Language Reference
Java” Fundamental Classes Reference
Database Programming with JDBC" and Java"
Java" Distributed Computing
Developing Java Beans"
Java® Security
Java” Cryptography
Java®" Swing

Java" Servlet Programming

Also from O’Reilly

Java” in a Nutshell
Java® in a Nutshell, Deluxe Edition

Java” Examples in a Nutshell

Java Servlet Programming

Jason Hunter
with William Crawford

O’REILLY"

Beijing « Cambridge + Farnham « Kéln « Paris « Sebastopol « Taipei « Tokyo

Java™ Serviet Programming
by Jason Hunter with William Crawford

Copyright © 1998 O’Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.
Editor: Paula Ferguson

Production Editor: Paula Carroll

Editorial and Production Services: Benchmark Productions, Inc.

Printing History:
October 1998: First Edition

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks and The Java™ Series is a trademark of O’Reilly & Associates, Inc. The association
of the image of a copper teakettle with the topic of Java™ Servlet programming is a trademark
of O’Reilly & Associates, Inc. Java™ and all Java-based trademarks and logos are trademarks
or registered trademarks of Sun Microsystems, Inc., in the United States and other countries.
O’Reilly & Associates, Inc. is independent of Sun Microsystems.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O’Reilly &
Associates, Inc. was aware of a trademark claim, the designations have been printed in caps
or initial caps.

While every precaution has been taken in the preparation of this book, the publisher assumes
no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 1-56592-391-X [1/00]
(M]

Table of Contents

PrOFACE ettt ix
L. IRErOdUCLION ... 1
History of Web APPIICAtIONSovveviiviiviiniiniiiiiiiiicneneeeeeeeeeneeeseens 1
SUPPOTL fOr SETVIELS .uviiuiiiiiniiiiiiciiiicic s 7
The Power Of SEIVIELScvviviviiriiniiniiiiiiicicc s 10

2. HTTP Servlet BASICSciciiieieicicieiesesesesssessassasesenns 14
HTTP BASICS wevvevvirriiiiiniiniinictiiiiiniiieieteseiesessesnese e eseeseesssssssssassssssessesnossonees 14
The ServIet APT ...ttt ne 17
Page GENETAtION ...cveieieieiicieieeetee ettt 19
Server-Side INCIUAESoveiiiiiiiiiiiiiiiiiitc e 27
Servlet Chaining and Filters ...t 30
JAVaSEIver PAges ... 37
MOVINE ON ittt b s es e snesnes 46

3. The Servlet Life Cycle ... 48
The Servlet AIteINALIVEcveierierierintintinieteieieeeeeeeeee e ene 48
Servlet Reloadingcoccuciciiiiiiiiniiiiiiciiiciic e 55
Init and DESLIOYcoviiiiiiiiiiiiiiciittr e 56
Single-Thread Model ...t 62
Background Processing ...t 64
Last Modified TImMEScoevveiiirininiiiiniiiiiiicnceeeneeseresesesseeeseesnesees 67

v

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vi

TABLE OF CONTENTS

Retrieving INfOrmation ... cenecencncneeecseneeseesesseasenenans 70
Initialization Parameters ... 72
THE SEIVET eoviiirintenieiettctcectttttetere bbb ae 74
B TS 1 1SS o 79
The REQUESE ..cviiiiiniiiiiiciictictitte e ene 84
Sending HTML INformation ... 124
The Structure of @ RESPONSEcoveuiiiiiiiiiiiiiicitiicccne 124
Sending a Normal ReSponseccocveiviiiiiiininininiciciccccennenns 125
Using Persistent CONNECHONScviviiriiniiiieieiinieninienineeeeeeeeene s 127
HTML GENETAON .uveueerretieriiriirietintereteieeeteeeeeeeressesse s nenenessessessesessenns 129
Stattus COAES .ovvivuiriiiiiiiiiiiii s 142
HTTP HEAdETS ..ocuvinrinriniineiniitiniiniititctitcteece ettt ese s sse s s 145
When Things Go WIONg ... 151
Sending Multimedia CONLENt ... 159
IMAZES et e 159
Compressed CONLENT ..c.eceiiiiiiiiniiniiiiiee e 188
SerVer PUSH c..oviiiiiiiicicc e 191
SeSSTON TrACKING ..ot 195
User AUtROTIZAtION ..c.coiiuiiniiiiiiiiniiicicccc s 196
Hidden Form Fields ... 197
L8 2 B A L0 T 200
Persistent COOKIEScouviiiiiiiitiiiiiicicctcc s 202
The Session Tracking APT ... 206
S@CUTILY oottt ettt et 221
HTTP AUthentiCation ...c.cceeeeierinrinieiiieeeeeteeeeeeeresrenen e enenne 222
Digital CertifiCatesccoovviivininiiniiniiiniccc s 232
Secure Sockets Layer (SSL) ...ooviviniiniiiieiiiiiininniieeecec s 234
Running Servlets SECUTELYcoviviiiiiiniiiiiiiiiiciccne 237
Database CONMECIIVILY ... 242
Relational Databasesccccoeviniviiniiniiniiniiiinscee s 243
The JDBC AP ..o 246

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

TABLE OF CONTENTS vii

10.

11.

12.

13.

Reusing Database ODJectsovviviviiniiiiiieiiiicininiiccece s 259
TTANSACHONS «vovveuvenrenienieiieieitietieteetet ettt b b ss s e e ersereebeesebens 261
Advanced JDBC Techniques ...t 272
Applet-Servlet Communicalioncevcneneeeceencereeeecenennes 277
Communication OPLONS ...ccevevirririiriiniiiieieieee e ereans 277
DAYtime SEIVET ..cueiiiviiiiiiiiiiiiiiciecc s 284
CRAL SEIVET viviiiiiiiicicc e 317
Interservlet COMMUNICALION ... 337
Servliet Manipulation ... 337
SETVIEt REUSE ..vovierinrirctieniciectcttttc e 342
Servlet CollabOTation ..ot 349
RECAP vttt e 363
Internationalization ... s 365
Western European Languagescooeviiniiiiniininnicniiicnecicncieneceene 366
Conforming to Local CUStOMSceeveueiereniiiiniititctiecetcencseteeeteseereeenenees 369
Non-Western European Languagesccoeeeeniieieniieienieneenieneeneneenienneens 371
Multiple Languagescccoceevvevueiiiniiniiniiniiicniiice e 376
Dynamic Language Negotiationcceceeieeieieeienenenieieieteieee e 379
HTML FOIMIS uviitiiiietieiintieieiectciecteteee ettt et ereeseese s s s sseesne s ese 389
Receiving Multilingual INput ..o 395
Odds and Ends ...t sssaenas 397
Parsing Parametersccocoeeieeiinienieieieietee e 397
Sending Email ... 401
Using Regular EXPressions ... 404
Executing Programs ...t 407
Using Native Methods ... 412
Acting as an RMI CHENL ...cuevieviiiiiniiiiiiiiiiiciciciencnc e 413
DEDUGEZING «overviiiiiiiiiiiiii s 415
Performance TUnINg ..o 423

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

viii TABLE OF CONTENTS
A. Servlet API Quick Reference ... eoeencnereeecncneeescenennes 425
B. HTTP Servlet API Quick Referenceeeecencneneeencnenn. 447
C. HTTP Status Codes ... senees 472
D. Character ENLILIES ... ssenees 478
El. CRATSELS .o 484

TUACX e 487

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Preface

In late 1996, Java on the server side was coming on strong. Several major software
vendors were marketing technologies specifically aimed at helping server-side Java
developers do their jobs more efficiently. Most of these products provided a pre
built infrastructure that could lift the developer’s attention from the raw socket
level into the more productive application level. For example, Netscape intro-
duced something it named “server-side applets”; the World Wide Web Consortium
included extensible modules called “resources” with its Java-based Jigsaw web
server; and with its WebSite server, O’Reilly Software promoted the use of a tech-
nology it (only coincidentally) dubbed “servlets.” The drawback: each of these
technologies was tied to a particular server and designed for very specific tasks.

Then, in early 1997, JavaSoft (a company that has since been reintegrated into Sun
Microsystems as the Java Software division) finalized Java servlets. This action
consolidated the scattered technologies into a single, standard, generic mecha-
nism for developing modular server-side Java code. Servlets were designed to work
with both Java-based and non-Java-based servers. Support for servlets has since
been implemented in nearly every web server, from Apache to Zeus, and in many
non-web servers as well.

Servlets have been quick to gain acceptance because, unlike many new technolo-
gies that must first explain the problem or task they were created to solve, servlets
are a clear solution to a well-recognized and widespread need: generating dynamic
web content. From corporations down to individual web programmers, people
who struggled with the maintenance and performance problems of CGI-based web
programming are turning to servlets for their power, portability, and efficiency.
Others, who were perhaps intimidated by CGI programming’s apparent reliance
on manual HTTP communication and the Perl and C languages, are looking to
servlets as a manageable first step into the world of web programming.

ix
Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

X PREFACE

This book explains everything you need to know about Java servlet programming.
The first five chapters cover the basics: what servlets are, what they do, and how
they work. The following eight chapters are where the true meat is—they explore
the things you are likely to do with servlets. You’ll find numerous examples, several
suggestions, a few warnings, and even a couple of true hacks that somehow made it
past technical review.

We cover Version 2.0 of the Servlet API, which was introduced as part of the Java
Web Server 1.1 in December 1997 and clarified by the release of the Java Servlet
Development Kit 2.0 in April 1998. Changes in the API from Version 1.0, finalized
in June 1997, are noted throughout the text.

Audience

Is this book for you? It is if you’re interested in extending the functionality of a
server—such as extending a web server to generate dynamic content. Specifically,
this book was written to help:

CGlI programmers
CGI is a popular but somewhat crude method of extending the functionality
of a web server. Servlets provide an elegant, efficient alternative.

NSAPI, ISAPI, ASP, and Server-Side JavaScript programmers
Each of these technologies can be used as a CGI alternative, but each has limi-
tations regarding portability, security, and/or performance. Servlets tend to
excel in each of these areas.

Java applet programmers
It has always been difficult for an applet to talk to a server. Servlets make it
easier by giving the applet an easy-to-connect-to, Java-based agent on the
server.

Authors of web pages with server-side includes
Pages that use server-side includes to call CGI programs can use <SERVLET>
tags to add content more efficiently to a page.

Authors of web pages with different appearances

By this we mean pages that must be available in different languages, have to be
converted for transmission over a low-bandwidth connection, or need to be
modified in some manner before they are sent to the client. Servlets provide
something called servlet chaining that can be used for processing of this type.
Each servlet in a servlet chain knows how to catch, process, and return a
specific kind of content. Thus, servlets can be linked together to do language
translation, change large color images to small black-and-white ones, convert
images in esoteric formats to standard GIF or JPEG images, or nearly anything
else you can think of.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

PREFACE xi

What You Need to Know

When we first started writing this book, we found to our surprise that one of the
hardest things was determining what to assume about you, the reader. Are you
familiar with Java? Have you done CGI or other web application programming
before? Or are you getting your feet wet with servlets? Do you understand HTTP
and HTML, or do those acronyms seem perfectly interchangeable? No matter
what experience level we imagined, it was sure to be too simplistic for some and
too advanced for others.

In the end, this book was written with the notion that it should contain predomi-
nantly original material: it could leave out exhaustive descriptions of topics and
concepts that are well described online or in other books. Scattered throughout
the text, you’ll find several references to these external sources of information.

Of course, external references only get you so far. This book expects you are
comfortable with the Java programming language and basic object-oriented
programming techniques. If you are coming to servlets from another language, we
suggest you prepare yourself by reading a book on general Java programming,
such as Exploring Java, by Patrick Niemeyer and Joshua Peck (O’Reilly). You may
want to skim quickly the sections on applets and AWT (graphical) programming
and spend extra time on network and multithreaded programming. If you want to
get started with servlets right away and learn Java as you go, we suggest you read
this book with a copy of Java in a Nutshell, by David Flanagan (O’Reilly), or
another Java reference book, at your side.

This book does not assume you have extensive experience with web programming,
HTTP, and HTML. But neither does it provide a full introduction to or exhaus-
tive description of these technologies. We’ll cover the basics necessary for effective
servlet development and leave the finer points (such as a complete list of HTML
tags and HTTP 1.1 headers) to other sources.

About the Examples

In this book you’ll find nearly 100 servlet examples. The code for these servlets is
all contained within the text, but you may prefer to download the examples rather
than type them in by hand. You can find the code online and packaged for down-
load at http://www.oreilly.com/catalog/jserviet/. You can also see many of the servlets
in action at http://www.servlets.com.

All the examples have been tested using Sun’s Java Web Server 1.1.1, running in
the Java Virtual Machine (JVM) bundled with the Java Development Kit (JDK) 1.
1.5, on both Windows and Unix. A few examples require alternate configura-
tions, and this has been noted in the text. The Java Web Server is free for

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Xii PREFACE

education use and has a 30-day trial period for all other use. You can download a
copy from http://java.sun.com/products. The Java Development Kit is freely down-
loadable from http://java.sun.com/products/jdk or, for educational use, from Attp://
www.sun.com/products-n-solutions/edu/java/. The Java Servlet Development Kit
(JSDK) is available separately from the JDK; you can find it at http:// java.sun.com/
products/servlet/.

This book also contains a set of utility classes—they are used by the servlet exam-
ples, and you may find them helpful for your own general-purpose servlet
development. These classes are contained in the com.oreilly.servlet package.
Among other things, there are classes to help servlets parse parameters, handle file
uploads, generate multipart responses (server push), negotiate locales for interna-
tionalization, return files, manage socket connections, and act as RMI servers.
There’s even a class to help applets communicate with servlets. The source code
for the com.oreilly.servlet package is contained within the text; the latest
version is also available online (with javadoc documentation) from Attp://www.
oreilly.com/catalog/jservlet/ and hitp://www.servlets.com.

Organization
This book consists of 13 chapters and 5 appendices, as follows:

Chapter 1, Introduction
Explains the role and advantage of Java servlets in web application
development.

Chapter 2, HTTP Servlet Basics
Provides a quick introduction to the things an HTTP servlet can do: page
generation, server-side includes, servlet chaining, and JavaServer Pages.

Chapter 3, The Servlet Life Cycle
Explains the details of how and when a servlet is loaded, how and when it is
executed, how threads are managed, and how to handle the synchronization
issues in a multithreaded system. Persistent state capabilities are also covered.

Chapter 4, Retrieving Information
Introduces the most common methods a servlet uses to receive information—
about the client, the server, the client’s request, and itself.

Chapter b, Sending HTML Information
Describes how a servlet can generate HTML, return errors and other status
codes, redirect requests, write data to the server log, and send custom HTTP
header information.

Chapter 6, Sending Multimedia Content
Looks at some of the interesting things a servlet can return: dynamically
generated images, compressed content, and multipart responses.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

PREFACE Xiil

Chapter 7, Session Tracking
Shows how to build a sense of state on top of the stateless HI'TP protocol. The
first half of the chapter demonstrates the traditional session-tracking tech-
niques used by CGI developers; the second half shows how to use the built-in
support for session tracking in the Servlet API.

Chapter 8, Security
Explains the security issues involved with distributed computing and demon-
strates how to maintain security with servlets.

Chapter 9, Database Connectivity
Shows how servlets can be wused for high-performance web-database
connectivity.

Chapter 10, Applet-Serviet Commumnication
Describes how servlets can be of use to applet developers who need to commu-
nicate with the server.

Chapter 11, Interservlet Communication
Discusses why servlets need to communicate with each other and how it can be
accomplished.

Chapter 12, Internationalization
Shows how a servlet can generate multilingual content.

Chapter 13, Odds and Ends
Presents a junk drawer full of useful servlet examples and tips that don’t really
belong anywhere else.

Appendix A, Servlet API Quick Reference
Contains a full description of the classes, methods, and variables in the
javax.servlet package.

Appendix B, HT'TP Servlet API Quick Reference
Contains a full description of the classes, methods, and variables in the
javax.servlet.http package.

Appendix C, HTTP Status Codes
Lists the status codes specified by HTTP, along with the mnemonic constants
used by servlets.

Appendix D, Character Entities
Lists the character entities defined in HTML, along with their equivalent
Unicode escape values.

Appendix E, Charsets
Lists the suggested charsets servlets may use to generate content in several
different languages.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Xiv PREFACE

Please feel free to read the chapters of this book in whatever order you like.
Reading straight through from front to back ensures that you won’t encounter any
surprises, as efforts have been taken to avoid forward references. If you want to
skip around, however, you can do so easily enough, especially after Chapter 5—the
rest of the chapters all tend to stand alone. One last suggestion: read the “Debug-
ging” section of Chapter 13 if at any time you find a piece of code that doesn’t
work as expected.

Conventions Used in This Book

Italic is used for:

e Pathnames, filenames, and program names
* New terms where they are defined

e Internet addresses, such as domain names and URLs
Boldface is used for:

* Particular keys on a computer keyboard

e Names of user interface buttons and menus
Constant Width is used for:

* Anything that appears literally in a Java program, including keywords, data
types, constants, method names, variables, class names, and interface names

¢ Command lines and options that should be typed verbatim on the screen
e All Java code listings

e HTML documents, tags, and attributes
Constant Width Italic is used for:

* General placeholders that indicate that an item is replaced by some actual
value in your own program

Request for Comments

Please help us to improve future editions of this book by reporting any errors,
inaccuracies, bugs, misleading or confusing statements, and plain old typos that
you find anywhere in this book. Email your bug reports and comments to us at:
bookquestions@oreilly.com. (Before sending a bug report, however, you may want to
check for an errata list at http://www.oveilly.com/catalog/jserviet/ to see if the bug has
already been submitted.)

Please also let us know what we can do to make this book more useful to you. We
take your comments seriously and will try to incorporate reasonable suggestions
into future editions.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

PREFACE XV

Acknowledgments

The authors would like to say a big thank you to the book’s technical reviewers,
whose constructive criticism has done much to improve this work: Mike Slinn,
Mike Hogarth, James Duncan Davidson, Dan Pritchett, Dave McMurdie, and Rob
Clark. We’re still in shock that it took one reviewer just three days to read what
took us a full year to write!

Jason Hunter

In a sense, this book began March 20, 1997, at the Computer Literacy bookstore in
San Jose, California. There—after a hilarious talk by Larry Wall and Randall
Schwartz, where Larry explained how he manages to automate his house using
Perl—I met the esteemed Tim O’Reilly for the first time. I introduced myself and
brazenly told him that some day (far in the future, I thought) I had plans to write
an O’Reilly book. I felt like I was telling Steven Spielberg I planned to star in one
of his movies. To my complete and utter surprise, Tim replied, “On what topic?”
So began the roller coaster ride that resulted in this book.

There have been several high points I fondly remember: meeting my editor (cool,
she’s young, too!), signing the official contract (did you know that all of O’Reilly’s
official paper has animals on it?), writing the first sentence (over and over),
printing the first chapter (and having it look just like an O’Reilly book), and then
watching as the printouts piled higher and higher, until eventually there was
nothing more to write (well, except the acknowledgments).

There have been a fair number of trying times as well. At one point, when the
book was about half finished, I realized the Servlet API was changing faster than I
could keep up. I believe in the saying, “If at first you don’t succeed, ask for help,”
so after a quick talent search I asked William Crawford, who was already working
on Java Enterprise in a Nulshell, if he could help speed the book to completion. He
graciously agreed and in the end wrote two chapters, as well as portions of the
appendices.

There are many others who have helped in the writing of this book, both directly
and indirectly. I'd like to say thank you to Paula Ferguson, the book’s editor, and
Mike Loukides, the Java series editor, for their efforts to ensure (and improve) the
quality of this book. And to Tim O’Reilly for giving me the chance to fulfill a
dream.

Thanks also to my managers at Silicon Graphics, Kathy Tansill and Walt Johnson,
for providing me with more encouragement and flexibility than I had any right to
expect.

I can’t say thank you enough to the engineers at Sun who were tremendously
helpful in answering questions, keeping me updated on changes in the Servlet
API, and promptly fixing almost every bug I reported: James Duncan Davidson

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

XVi PREFACE

(who looks the spitting image of James Gosling), Jim Driscoll, Rob Clark, and Dave
Brownell.

Thanks also to the members of the jserv-interest mailing list, whose questions and
answers have shaped the content of this book; Will Ramey, an old friend who
didn’t let friendship blind his critical eye; Mike Engber, the man to whom I turned
when I had run out of elegant workarounds and was ready to accept the crazy
things he comes up with; Dave Vandegrift, the first person to read many of the
chapters; Bill Day, author of Java Media Players, who helped intangibly by going
through the book writing process in parallel with me; Michael O’Connell and Jill
Steinberg, editors at JavaWorld, where I did my first professional writing; Doug
Young, who shared with me the tricks he learned writing seven technical books of
his own; and Shoji Kuwabara, Mieko Aono, Song Yung, Matthew Kim, and Alex-
andr Pashintsev for their help translating “Hello World” for Chapter 12.

Finally, thanks to Mom and Dad, for their love and support and for the time they
spent long ago teaching me the basics of writing. And a special thanks to my girl-
friend, Kristi Taylor, who made the small time away from work a pleasure.

And Grandpa, I wish you could have seen this.

Jason Hunter
July 1998

William Crawford

First and foremost, thanks to Shelley Norton, Dr. Isaac Kohane, Dr. James Fackler,
and Dr. Richard Kitz (plus a supporting cast whose contributions were invalu-
able), whose assistance and early support have made everything since possible.
Also, to Martin Streeter of Invantage, Inc., for his support during this project.

Without Rob Leith, Roger Stacey, and Fred Strebeigh, I would probably still be
stuck in the passive voice. Dale Dougherty offered me money in exchange for
words, a twist of events that I still haven’t gotten over. Andy Kwak, Joel Pomerantz,
and Matthew Proto, brave souls all, were willing to read drafts and listen to
complaints at one o’clock in the morning.

And, of course, to Mom and Dad for their years of support, and to my sister Faith
for (usually) letting me get away with being a nerd.

William Crawford
July 1998

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

In this chapter:

* History of Web
Applications

* Support for Servlets

® The Power of Servlets

Introduction

The rise of server-side Java applications is one of the latest and most exciting
trends in Java programming. The Java language was originally intended for use in
small, embedded devices. It was first hyped as a language for developing elaborate
clientside web content in the form of applets. Until recently, Java’s potential as a
server-side development platform had been sadly overlooked. Now, Java is coming
into its own as a language ideally suited for server-side development.

Businesses in particular have been quick to recognize Java’s potential on the
server—Java is inherently suited for large client/server applications. The cross-
platform nature of Java is extremely useful for organizations that have a heteroge-
neous collection of servers running various flavors of the Unix and Windows
operating systems. Java’s modern, object-oriented, memory-protected design
allows developers to cut development cycles and increase reliability. In addition,
Java’s built-in support for networking and enterprise APIs provides access to legacy
data, easing the transition from older client/server systems.

Java servlets are a key component of server-side Java development. A servlet is a
small, pluggable extension to a server that enhances the server’s functionality.
Servlets allow developers to extend and customize any Java-enabled server—a web
server, a mail server, an application server, or any custom server—with a hitherto
unknown degree of portability, flexibility, and ease. But before we go into any
more detail, let’s put things into perspective.

History of Web Applications

While servlets can be used to extend the functionality of any Java-enabled server,
today they are most often used to extend web servers, providing a powerful, effi-
cient replacement for CGI scripts. When you use a servlet to create dynamic

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

2 CHAPTER 1: INTRODUCTION

content for a web page or otherwise extend the functionality of a web server, you
are in effect creating a web application. While a web page merely displays static
content and lets the user navigate through that content, a web application
provides a more interactive experience. A web application can be as simple as a
keyword search on a document archive or as complex as an electronic storefront.
Web applications are being deployed on the Internet and on corporate intranets
and extranets, where they have the potential to increase productivity and change
the way that companies, large and small, do business.

To understand the power of servlets, we need to step back and look at some of the
other approaches that can be used to create web applications.

Common Gateway Interface

The Common Gateway Interface, normally referred to as CGI, was one of the first
practical techniques for creating dynamic content. With CGI, a web server passes
certain requests to an external program. The output of this program is then sent
to the client in place of a static file. The advent of CGI made it possible to imple-
ment all sorts of new functionality in web pages, and CGI quickly became a de
facto standard, implemented on dozens of web servers.

It’s interesting to note that the ability of CGI programs to create dynamic web
pages is a side effect of its intended purpose: to define a standard method for an
information server to talk with external applications. This origin explains why CGI
has perhaps the worst life cycle imaginable. When a server receives a request that
accesses a CGI program, it must create a new process to run the CGI program and
then pass to it, via environment variables and standard input, every bit of informa-
tion that might be necessary to generate a response. Creating a process for every
such request requires time and significant server resources, which limits the
number of requests a server can handle concurrently. Figure 1-1 shows the CGI
life cycle.

(Gl-based Weh Server

Main Process

Request for (G1T—————»—o ———»| Child Process for CGI1 |
Request for (612 ——— — | Child Process for (612 }
Request for (GIT —————so ——»{ Child Process for (611

Figure 1-1. The CGI life cycle

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

HisTORY OF WEB APPLICATIONS 3

Even though a CGI program can be written in almost any language, the Perl
programming language has become the predominant choice. Its advanced text-
processing capabilities are a big help in managing the details of the CGI interface.
Writing a CGI script in Perl gives it a semblance of platform independence, but it
also requires that each request start a separate Perl interpreter, which takes even
more time and requires extra resources.

Another often-overlooked problem with CGI is that a CGI program cannot
interact with the web server or take advantage of the server’s abilities once it
begins execution because it is running in a separate process. For example, a CGI
script cannot write to the server’s log file.

For more information on CGI programming, see CGI Programming on the World
Wide Web by Shishir Gundavaram (O’Reilly).

FastCGI

A company named Open Market developed an alternative to standard CGI named
FastCGI. In many ways, FastCGI works just like CGI—the important difference is
that FastCGI creates a single persistent process for each FastCGI program, as
shown in Figure 1-2. This eliminates the need to create a new process for each
request.

FastCGl-based Web Server

Main Process
Request for (GIT ——————o -—————>{ Single Child Process for CGI1

Request for (612 ————

Request for CGI1 . e Single Child Process for (GI2

Figure 1-2. The FastCGI life cycle

Although FastCGI is a step in the right direction, it still has a problem with process
proliferation: there is at least one process for each FastCGI program. If a FastCGI
program is to handle concurrent requests, it needs a pool of processes, one per
request. Considering that each process may be executing a Perl interpreter, this
approach does not scale as well as you might hope. (Although, to its credit, FastCGI
can distribute its processes across multiple servers.) Another problem with FastCGI
is that it does nothing to help the FastCGI program more closely interact with the
server. As of this writing, the FastCGI approach has not been implemented by some

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

4 CHAPTER 1: INTRODUCTION

of the more popular servers, including Microsoft’s Internet Information Server.
Finally, FastCGI programs are only as portable as the language in which they’re
written.

For more information on FastCGlI, see http://www.fastcgi.com/.

mod_perl

If you are using the Apache web server, another option for improving CGI perfor-
mance is using mod_perl. mod_perl is a module for the Apache server that embeds a
copy of the Perl interpreter into the Apache httpd executable, providing complete
access to Perl functionality within Apache. The effect is that your CGI scripts are
precompiled by the server and executed without forking, thus running much
more quickly and efficiently. For more information on mod_perl, see http://perl.
apache.org/.

PerlEx

PerlEx, developed by ActiveState, improves the performance of CGI scripts written
in Perl that run on Windows NT web servers (Microsoft’s Internet Information
Server, O’Reilly’s WebSite Professional, and Netscape’s FastTrack Server and
Enterprise Server). PerlEx uses the web server’s native API to achieve its perfor-
mance gains. For more information, see hitp://www.activestate.com/plex/.

Other Solutions

CGI/Perl has the advantage of being a more-or-less platform-independent way to
produce dynamic web content. Other well-known technologies for creating web
applications, such as ASP and server-side JavaScript, are proprietary solutions that
work only with certain web servers.

Server Extension APIs

Several companies have created proprietary server extension APIs for their web
servers. For example, Netscape provides an internal API called NSAPI (now
becoming WAI) and Microsoft provides ISAPI. Using one of these APIs, you can
write server extensions that enhance or change the base functionality of the server,
allowing the server to handle tasks that were once relegated to external CGI
programs. As you can see in Figure 1-3, server extensions exist within the main
process of a web server.

Because server-specific APIs use linked C or C++ code, server extensions can run
extremely fast and make full use of the server’s resources. Server extensions,
however, are not a perfect solution by any means. Besides being difficult to
develop and maintain, they pose significant security and reliability hazards: a

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

HisTORY OF WEB APPLICATIONS 5

Web Server with Server Extension API

Main Process
Request for

ServerExtension] ———> | ServerExtension]
Request for "

ServerExtension2 _

Request for - ServerExtension?2
ServerExtension]

Figure 1-3. The server extension life cycle

crashed server extension can bring down the entire server. And, of course, propri-
etary server extensions are inextricably tied to the server API for which they were
written—and often tied to a particular operating system as well.

Active Server Pages

Microsoft has developed a technique for generating dynamic web content called
Active Server Pages, or sometimes just ASP. With ASP, an HTML page on the web
server can contain snippets of embedded code (usually VBScript or JScript—
although it’s possible to use nearly any language). This code is read and executed
by the web server before it sends the page to the client. ASP is optimized for gener-
ating small portions of dynamic content.

Support for ASP is built into Microsoft Internet Information Server Version 3.0
and above, available for free from http://www.microsoft.com/iis. Support for other
web servers is available as a commercial product from ChililSoft at Attp://www.
chilisoft.com.

For more information on programming Active Server Pages, see http://www.
microsoft.com/workshop/server/default.asp and http://www.activeserverpages.com,.

Server-side JavaScript

Netscape too has a technique for server-side scripting, which it calls server-side
JavaScript, or SSJS for short. Like ASP, SSJS allows snippets of code to be
embedded in HTML pages to generate dynamic web content. The difference is
that SSJS uses JavaScript as the scripting language. With SSJS, web pages are
precompiled to improve performance.

Support for server-side JavaScript is available only with Netscape FastTrack Server
and Enterprise Server Version 2.0 and above.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

6 CHAPTER 1: INTRODUCTION

For more information on programming with server-side JavaScript, see http://
developer. netscape.com/tech/javascript/ssjs/ssjs. html.

Java Servlets

Enter Java servlets. As was said earlier, a servlet is a generic server extension—a
Java class that can be loaded dynamically to expand the functionality of a server.
Servlets are commonly used with web servers, where they can take the place of CGI
scripts. A servlet is similar to a proprietary server extension, except that it runs
inside a Java Virtual Machine (JVM) on the server (see Figure 1-4), so it is safe and
portable. Servlets operate solely within the domain of the server: unlike applets,
they do not require support for Java in the web browser.

Java Servlet-based Web Server
Main Process

VM
Request for Servletl ——— Troad

Request for Servlet? ———-. “V,,.--""'Thread

) T Serviet2
Request for Servlet] ———

Figure 1-4. The servlet life cycle

Unlike CGI and FastCGI, which use multiple processes to handle separate
programs and/or separate requests, servlets are all handled by separate threads
within the web server process. This means that servlets are also efficient and scal-
able. Because servlets run within the web server, they can interact very closely with
the server to do things that are not possible with CGI scripts.

Another advantage of servlets is that they are portable: both across operating
systems as we are used to with Java and also across web servers. As you’ll see
shortly, all of the major web servers support servlets. We believe that Java servlets
offer the best possible platform for web application development, and we’ll have
much more to say about this later in the chapter.

Although servlets are most commonly used as a replacement for CGI scripts on a
web server, they can extend any sort of server. Imagine, for example, a Java-based
FTP server that handles each command with a separate servlet. New commands
can be added by simply plugging in new servlets. Or, imagine a mail server that

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SUPPORT FOR SERVLETS 7

allows servlets to extend its functionality, perhaps by performing a virus scan on all
attached documents or handling mail filtering tasks.

This book emphasizes the use of servlets as a replacement for CGI programs. We
believe that, at least in the near term, most servlet developers will design and
deploy servlets for use with HTTP servers. In the long term, however, other uses
are likely to catch on, so this book takes pains to point out what functionality is
applicable to generic servlets and what applies only to HTTP servlets. Whatever
you hope to do with servlets, this book can help you with your task.

Support for Servlets

Like Java itself, servlets were designed for portability. Servlets are supported on all
platforms that support Java, and servlets work with all the major web servers.” Java
servlets, as defined by the Java Software division of Sun Microsystems (formerly
known as JavaSoft), are the first standard extension to Java. This means that serv-
lets are officially blessed by Sun and are part of the Java language, but they are not
part of the core Java API. Therefore, although they may work with any Java Virtual
Machine (JVM), servlet classes need not be bundled with all JVMs. More informa-
tion about the Java Extension Framework is available at http//java.sun.com/
products/jdk/1.2/docs/guide/extensions.

To make it easy for you to develop servlets, Sun has made publicly available a set of
classes that provide basic servlet support. The javax.servlet and javax.
servlet.http packages constitute this Servlet API. Version 2.0 of these classes
comes bundled with the Java Servlet Development Kit (JSDK) for use with the Java
Development Kit version 1.1 and above; the JDSK is available for download from
hitp://java.sun.com/products/servlet/.t

Many web server vendors have incorporated these classes into their servers to
provide servlet support, and several have also provided additional functionality.
Sun’s Java Web Server, for instance, includes a proprietary interface to the server’s
security features.

It doesn’t much matter where you get the servlet classes, as long as you have them on
your system, since you need them to compile your servlets. In addition to the servlet
classes, you need a servlet engine, so that you can test and deploy your servlets. Your

* Note that several web server vendors have their own server-side Java implementations, some of which
have also been given the name “servlets”. These are generally incompatible with Java servlets as de-
fined by Sun. Most of these vendors are converting their Java support to standard servlets, or are in-
troducing standard servlet support in parallel, to allow backward compatibility.

1 At one point it was planned the contents of the JSDK would come bundled as part of JDK 1.2. How-
ever, it was later decided to keep the servlet classes separate from the JDK, to better allow for timely
revisions and corrections to the J[SDK.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

8 CHAPTER 1: INTRODUCTION

choice of servlet engine depends in part on the web server(s) you are running.
There are three flavors of servlet engines: standalone, add-on, and embeddable.

Standalone Servlet Engines

A standalone engine is a server that includes built-in support for servlets. Such an
engine has the advantage that everything works right out of the box. One disad-
vantage, however, is that you have to wait for a new release of the web server to get
the latest servlet support. Because servlets are still fairly new, this sort of server is
still a bit of a rarity. As the various vendors upgrade their web servers, we expect
that many of the servers will provide built-in support for servlets.

Standalone engines in web servers include the following:

* Sun’s Java Web Server (formerly called “Jeeves”), unofficially considered the
reference implementation for how a servlet engine should support servlets.
Written entirely in Java (except for two native code libraries that enhance its
functionality but are not needed). See http://java.sun.com/products/.

* The World Wide Web Consortium’s Jigsaw Server, freely available and also
written entirely in Java. See http://www.w3.o0rg/Jigsaw.

* O’Reilly’s WebSite Professional (Version 2.1 and later), the first server not
written in Java to provide built-in servlet support. See http://website.oreilly.com.

* Netscape’s Enterprise Server (Version 3.51 and later), the most popular web
server to provide builtin servlet support. Unfortunately, Version 3.51 sup-
ports only the early Servlet API 1.0 and suffers from a number of bugs so sig-
nificant it’s almost unusable. For the time being, use an add-on servlet engine
with Netscape servers instead. See http://home.netscape.com/download.

* Lotus’s Domino Go Webserver (Version 4.6 and later), another popular web
server with built-in servlet support. Version 4.6.x supports only the early Serv-
let API 1.0; however, Lotus claims to be replacing its proprietary GWAPI server
extension technology with Java servlets, so it’s likely that future versions of the
Domino Go Webserver will include robust servlet support. See http://www.
lotus.com/dominogowebserver/.

Application servers are a fertile new area of development. An application server
offers server-side support for developing enterprise-based applications. Here are
two application servers that include servlet engines:

* WebLogic’s Tengah Application Server, a high-end server written entirely in
Java. See http://www.weblogic.com/products/tengahindex. html.

¢ ATG’s Dynamo Application Server 3, another high-end server written entirely
in Java. See http://www.atg.com/.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SUPPORT FOR SERVLETS 9

Add-on Servlet Engines

An add-on servlet engine functions as a plug-in to an existing server—it adds
servlet support to a server that was not originally designed with servlets in mind.
Add-on servlet engines have been written for many servers including Apache,
Netscape’s FastTrack Server and Enterprise Server, Microsoft’s Internet Informa-
tion Server and Personal Web Server, O’Reilly’s WebSite, Lotus Domino’s Go
Webserver, StarNine’s WebSTAR, and Apple’s AppleShare IP. This type of engine
acts as a stopgap solution until a future server release incorporates servlet support.
A plug-in also can be used with a server that provides a poor or outdated servlet
implementation.

Add-on servlet engines include these:

® The Java-Apache project’s JServ module, a freely available servlet engine that
adds servlet support to the extremely popular Apache server. See http://java.
apache.org/.

* Live Software’s JRun, a freely available plug-in designed to support the full
Servlet API on all the popular web servers on all the popular operating systems.
The latest version even features a basic web server for development purposes.
See http://www.livesoftware.com/products/jrun/.

e IBM’s WebSphere Application Server (formerly known as ServletExpress), a
plug-in that is being called an application server. It is designed to support the
full Servlet API on several popular web servers on several popular operating
systems. See http://www.software.ibm.com/webservers/.

¢ New Atlanta’s ServletExec, a plug-in designed to support the full Servlet API
on several web servers on several operating systems. See http://www.newatlanta.
com/.

® Gefion Software’s WAICoolRunner, a freely available plug-in that supports
most of the Servlet API on Netscape’s FastTrack Server and Enterprise Server
versions 3.x and later, written in Java using Netscape’s WAI interface. See
hitp://www.gefionsoftware.com/WAICoolRunner/.

¢ Unicom’s Servlet CGI Development Kit, a freely available framework that sup-
ports servlets on top of CGI. What it lacks in efficiency it makes up for in ubig-
uity. See http://www.unicom.net/java/.

Embeddable Servlet Engines

An embeddable engine is generally a lightweight servlet deployment platform that
can be embedded in another application. That application becomes the true
Server.

Embeddable servlet engines include the following:

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

10 CHAPTER 1: INTRODUCTION

* Sun’s JavaServer Engine, a high-quality, high-end framework for designing
and building Java servers. Sun’s Java Web Server and IBM’s WebSphere Appli-
cation Server were built using the Java Server Engine. See http://java.sun.com/
products/javaserverengine/.

¢ Jef Poskanzer’s Acme.Serve, a freely available, simple web server that runs serv-
lets “more or less compatible” with the Servlet APIL. See http://www.acme.com/
java/software/Package-Acme.Serve. html.

e Paralogic’s WebCore, a freely available but unsupported embeddable web
server, written entirely in Java. It incorporates parts of Acme.Serve. See http://
www.paralogic.com/webcore/.

* Anders Kristensen’s Nexus Web Server, a freely available servlet runner that
implements most of the Servlet API and can be easily embedded in Java appli-
cations. See http://www-uk.hpl.hp.com/people/ak/java/nexus/.

Additional Thoughts

Before proceeding, we feel obliged to point out that not all servlet engines are
created equal. So, before you choose a servlet engine (and possibly a server) with
which to deploy your servlets, take it out for a test drive. Kick its tires a little. Check
the mailing lists. Always verify that your servlets behave as they do in the Java Web
Server implementation. With servlets, you don’t have to worry about the lowest-
common-denominator implementation, so you should pick a servlet engine that
has the functionality that you want.

For a complete, up-to-date list of available servlet engines, see the official list main-
tained by Sun at:

http://jserv.java.sun.com/products/java-server/servlets/environments. html

The Power of Servlets

So far, we have portrayed servlets as an alternative to other dynamic web content
technologies, but we haven’t really explained why we think you should use them.
What makes servlets a viable choice for web development? We believe that servlets
offer a number of advantages over other approaches, including: portability, power,
efficiency, endurance, safety, elegance, integration, extensibility, and flexibility.
Let’s examine each in turn.

Portability

Because servlets are written in Java and conform to a well-defined and widely
accepted API, they are highly portable across operating systems and across server
implementations. You can develop a servlet on a Windows NT machine running

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE POWER OF SERVLETS 11

the Java Web Server and later deploy it effortlessly on a high-end Unix server
running Apache. With servlets, you can truly “write once, serve everywhere.”

Servlet portability is not the stumbling block it so often is with applets, for two
reasons. First, servlet portability is not mandatory. Unlike applets, which have to be
tested on all possible client platforms, servlets have to work only on the server
machines that you are using for development and deployment. Unless you are in
the business of selling your servlets, you don’t have to worry about complete porta-
bility. Second, servlets avoid the most error-prone and inconsistently implemented
portion of the Java language: the Abstract Windowing Toolkit (AWT) that forms
the basis of Java graphical user interfaces.

Power

Servlets can harness the full power of the core Java APIs: networking and URL
access, multithreading, image manipulation, data compression, database connec-
tivity, internationalization, remote method invocation (RMI), CORBA
connectivity, and object serialization, among others. If you want to write a web
application that allows employees to query a corporate legacy database, you can
take advantage of all of the Java Enterprise APIs in doing so. Or, if you need to
create a web-based directory lookup application, you can make use of the JNDI
APIL.

As a servlet author, you can also pick and choose from a plethora of third-party
Java classes and JavaBeans components. In the future, you’ll even be able to use
newly introduced Enterprise JavaBeans components. Today, servlets can use third-
party code to handle tasks such as regular expression searching, data charting,
advanced database access, and advanced networking.

Servlets are also well suited for enabling client/server communication. With a Java-
based applet and a Java-based servlet, you can use RMI and object serialization to
handle client/server communication, which means that you can leverage the same
custom code on the client as on the server. Using CGI for the same purpose is
much more complicated, as you have to develop your own custom protocol to
handle the communication.

Efficiency and Endurance

Servlet invocation is highly efficient. Once a servlet is loaded, it generally remains
in the server’s memory as a single object instance. Thereafter, the server invokes
the servlet to handle a request using a simple, lightweight method invocation.
Unlike with CGI, there’s no process to spawn or interpreter to invoke, so the
servlet can begin handling the request almost immediately. Multiple, concurrent
requests are handled by separate threads, so servlets are highly scalable.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

12 CHAPTER 1: INTRODUCTION

Servlets, in general, are naturally enduring objects. Because a servlet stays in the
server’s memory as a single object instance, it automatically maintains its state and
can hold on to external resources, such as database connections, that may other-
wise take several seconds to establish.

Safety

Servlets support safe programming practices on a number of levels. Because they
are written in Java, servlets inherit the strong type safety of the Java language. In
addition, the Servlet API is implemented to be type-safe. While most values in a
CGI program, including a numeric item like a server port number, are treated as
strings, values are manipulated by the Servlet API using their native types, so a
server port number is represented as an integer. Java’s automatic garbage collec-
tion and lack of pointers mean that servlets are generally safe from memory
management problems like dangling pointers, invalid pointer references, and
memory leaks.

Servlets can handle errors safely, due to Java’s exception-handling mechanism. If a
servlet divides by zero or performs some other illegal operation, it throws an
exception that can be safely caught and handled by the server, which can politely
log the error and apologize to the user. If a C++based server extension were to
make the same mistake, it could potentially crash the server.

A server can further protect itself from servlets through the use of a Java security
manager. A server can execute its servlets under the watch of a strict security
manager that, for example, enforces a security policy designed to prevent a mali-
cious or poorly written servlet from damaging the server file system.

Elegance

The elegance of servlet code is striking. Servlet code is clean, object oriented,
modular, and amazingly simple. One reason for this simplicity is the Servlet API
itself, which includes methods and classes to handle many of the routine chores of
servlet development. Even advanced operations, like cookie handling and session
tracking, are abstracted into convenient classes. A few more advanced but still
common tasks were left out of the API, and, in those places, we have tried to step
in and provide a set of helpful classes in the com.oreilly.servlet package.

Integration

Servlets are tightly integrated with the server. This integration allows a servlet to
cooperate with the server in ways that a CGI program cannot. For example, a
servlet can use the server to translate file paths, perform logging, check authoriza-
tion, perform MIME type mapping, and, in some cases, even add users to the

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE POWER OF SERVLETS 13

server’s user database. Server-specific extensions can do much of this, but the
process is usually much more complex and error-prone.

Extensibility and Flexibility

The Servlet API is designed to be easily extensible. As it stands today, the API
includes classes that are optimized for HTTP servlets. But at a later date, it could
be extended and optimized for another type of servlets, either by Sun or by a third
party. It is also possible that its support for HTTP servlets could be further
enhanced.

Servlets are also quite flexible. As you’ll see in the next chapter, an HTTP servlet
can be used to generate a complete web page; it can be added to a static page
using a <SERVLET> tag in what’s known as a server-side include; and it can be used
in cooperation with any number of other servlets to filter content in something
called a servlet chain. In addition, just before this book went to press, Sun intro-
duced JavaServer Pages, which offer a way to write snippets of servlet code directly
within a static HTML page, using a syntax that is curiously similar to Microsoft’s
Active Server Pages (ASP). Who knows what they (or you) will come up with next.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

In this chapter:
e HTTP Basics
® The Servlet API

* Page Generation

* Server-Side Includes

* Servlet Chaining and
Filters

* JavaServer Pages

* Moving On

HTTP Servlet Basics

This chapter provides a quick introduction to some of the things an HTTP servlet
can do. For example, an HTTP servlet can generate an HTML page, either when
the servlet is accessed explicitly by name, by following a hypertext link, or as the
result of a form submission. An HTTP servlet can also be embedded inside an
HTML page, where it functions as a server-side include. Servlets can be chained
together to produce complex effects—one common use of this technique is for
filtering content. Finally, snippets of servlet code can be embedded directly in
HTML pages using a new technique called JavaServer Pages.

Although the code for each of the examples in this chapter is available for down-
load (as described in the Preface), we would suggest that for these first examples
you deny yourself the convenience of the Internet and type in the examples. It
should help the concepts seep into your brain.

Don’t be alarmed if we seem to skim lightly over some topics in this chapter. Serv-
lets are powerful and, at times, complicated. The point here is to give you a
general overview of how things work, before jumping in and overwhelming you
with all of the details. By the end of this book, we promise that you’ll be able to
write servlets that do everything but make tea.

HTTP Basics

Before we can even show you a simple HTTP servlet, we need to make sure that
you have a basic understanding of how the protocol behind the Web, HTTP,
works. If you’re an experienced CGI programmer (or if you've done any serious
server-side web programming), you can safely skip this section. Better yet, you
might skim it to refresh your memory about the finer points of the GET and POST
methods. If you are new to the world of server-side web programming, however,

14
Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

HTTP Basics 15

you should read this material carefully, as the rest of the book is going to assume
that you understand HTTP. For a more thorough discussion of HTTP and its
methods, see Web Client Programming by Clinton Wong (O’Reilly).

Requests, Responses, and Headers

HTTP is a simple, stateless protocol. A client, such as a web browser, makes a
request, the web server responds, and the transaction is done. When the client
sends a request, the first thing it specifies is an HTTP command, called a method,
that tells the server the type of action it wants performed. This first line of the
request also specifies the address of a document (a URL) and the version of the
HTTP protocol it is using. For example:

GET /intro.html HTTP/1.0

This request uses the GET method to ask for the document named intro.htm,
using HTTP Version 1.0. After sending the request, the client can send optional
header information to tell the server extra information about the request, such as
what software the client is running and what content types it understands. This
information doesn’t directly pertain to what was requested, but it could be used by
the server in generating its response. Here are some sample request headers:

User-Agent: Mozilla/4.0 (compatible; MSIE 4.0; Windows 95)
Accept: image/gif, image/jpeg, text/*, */*

The User-Agent header provides information about the client software, while the
Accept header specifies the media (MIME) types that the client prefers to accept.
(We’ll talk more about request headers in the context of servlets in Chapter 4,
Retrieving Information.) After the headers, the client sends a blank line, to indicate
the end of the header section. The client can also send additional data, if appro-
priate for the method being used, as it is with the POST method that we’ll discuss
shortly. If the request doesn’t send any data, it ends with an empty line.

After the client sends the request, the server processes it and sends back a
response. The first line of the response is a status line that specifies the version of
the HTTP protocol the server is using, a status code, and a description of the
status code. For example:

HTTP/1.0 200 OK

This status line includes a status code of 200, which indicates that the request was
successful, hence the description “OK”. Another common status code is 404, with
the description “Not Found”—as you can guess, this means that the requested
document was not found. Chapterb, Sending HTML Information, discusses
common status codes and how you can use them in servlets, while Appendix C,
HTTP Status Codes, provides a complete list of HTTP status codes.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

16 CHAPTER 2: HTTP SERVLET BASICS

After the status line, the server sends response headers that tell the client things
like what software the server is running and the content type of the server’s
response. For example:

Date: Saturday, 23-May-98 03:25:12 GMT

Server: JavaWebServer/1.1.1

MIME-version: 1.0

Content-type: text/html

Content-length: 1029

Last-modified: Thursday, 7-May-98 12:15:35 GMT

The Server header provides information about the server software, while the
Content-type header specifies the MIME type of the data included with the
response. (We’ll also talk more about response headers in Chapter 5.) The server
sends a blank line after the headers, to conclude the header section. If the request
was successful, the requested data is then sent as part of the response. Otherwise,
the response may contain human-readable data that explains why the server
couldn’t fulfill the request.

GLET and POST

When a client connects to a server and makes an HTTP request, the request can
be of several different types, called methods. The most frequently used methods
are GET and POST. Put simply, the GET method is designed for getting informa-
tion (a document, a chart, or the results from a database query), while the POST
method is designed for posting information (a credit card number, some new
chart data, or information that is to be stored in a database). To use a bulletin
board analogy, GET is for reading and POST is for tacking up new material.

The GET method, although it’s designed for reading information, can include as
part of the request some of its own information that better describes what to get—
such as an x, y scale for a dynamically created chart. This information is passed as a
sequence of characters appended to the request URL in what’s called a query string.
Placing the extra information in the URL in this way allows the page to be book-
marked or emailed like any other. Because GET requests theoretically shouldn’t
need to send large amounts of information, some servers limit the length of URLs
and query strings to about 240 characters.

The POST method uses a different technique to send information to the server
because in some cases it may need to send megabytes of information. A POST
request passes all its data, of unlimited length, directly over the socket connection
as part of its HTTP request body. The exchange is invisible to the client. The URL
doesn’t change at all. Consequently, POST requests cannot be bookmarked or
emailed or, in some cases, even reloaded. That’s by design—information sent to
the server, such as your credit card number, should be sent only once.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE SERVLET API 17

In practice, the use of GET and POST has strayed from the original intent. It’s
common for long parameterized requests for information to use POST instead of
GET to work around problems with overly-long URLs. It’s also common for simple
forms that upload information to use GET because, well—why not, it works!
Generally, this isn’t much of a problem. Just remember that GET requests,
because they can be bookmarked so easily, should not be allowed to cause damage
for which the client could be held responsible. In other words, GET requests
should not be used to place an order, update a database, or take an explicit client
action in any way.

Other Methods

In addition to GET and POST, there are several other lesser-used HTTP methods.
There’s the HEAD method, which is sent by a client when it wants to see only the
headers of the response, to determine the document’s size, modification time, or
general availability. There’s also PUT, to place documents directly on the server,
and DELETE, to do just the opposite. These last two aren’t widely supported due
to complicated policy issues. The TRACE method is used as a debugging aid—it
returns to the client the exact contents of its request. Finally, the OPTIONS
method can be used to ask the server which methods it supports or what options
are available for a particular resource on the server.

The Servlet API

Now that you have a basic understanding of HT'TP, we can move on and talk about
the Servlet API that you’ll be using to create HTTP servlets, or any kind of serv-
lets, for that matter. Servlets use classes and interfaces from two packages: javax.
servlet and javax.servlet.http. The javax.servlet package contains
classes to support generic, protocol-independent servlets. These classes are
extended by the classes in the javax.servlet.http package to add HTTP-
specific functionality. The top-level package name is javax instead of the familiar
java, to indicate that the Servlet API is a standard extension.

Every servlet must implement the javax.servlet.Servlet interface. Most serv-
lets implement it by extending one of two special classes: javax. servlet.
GenericServlet or javax.servlet.http.HttpServlet. A protocol-indepen-
dent servlet should subclass GenericServlet, while an HTTP servlet should
subclass HttpServlet, which is itself a subclass of GenericServlet with added
HTTP-specific functionality.

Unlike a regular Java program, and just like an applet, a servlet does not have a
main () method. Instead, certain methods of a servlet are invoked by the server in

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

18 CHAPTER 2: HTTP SERVLET BASICS

the process of handling requests. Each time the server dispatches a request to a
servlet, it invokes the servlet’s service () method.

A generic servlet should override its service() method to handle requests as
appropriate for the servlet. The service() method accepts two parameters: a
request object and a response object. The request object tells the servlet about the
request, while the response object is used to return a response. Figure 2-1 shows
how a generic servlet handles requests.

Server GenericServlet subdass

request —

response < \/

KEY: [implemented by subclass |

Figure 2-1. A generic servlet handling a request

In contrast, an HTTP servlet usually does not override the service() method.
Instead, it overrides doGet () to handle GET requests and doPost () to handle
POST requests. An HTTP servlet can override either or both of these methods,
depending on the type of requests it needs to handle. The service() method of
HttpServlet handles the setup and dispatching to all the doXXX() methods,
which is why it usually should not be overridden. Figure 2-2 shows how an HTTP
servlet handles GET and POST requests.

Web Server HttpServlet subdass
GET request —— -
FESPONSE <o
—y
POST request)
response yd
\/
KEY: - implemented by subclass |

Figure 2-2. An HTTP servlet handling GET and POST requests

Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

PAGE GENERATION 19

An HTTP servlet can override the doPut () and doDelete() methods to handle
PUT and DELETE requests, respectively. However, HTTP servlets generally don’t
touch doHead (), doTrace (), or doOptions (). For these, the default implemen-
tations are almost always sufficient.

The remainder in the javax.servlet and javax.servlet.http packages are
largely support classes. For example, the ServletRequest and ServletResponse
classes in javax.servlet provide access to generic server requests and
responses, while HttpServletRequest and HttpServletResponse in javax.
servlet.http provide access to HTTP requests and responses. The javax.
servlet.http package also contains an HttpSession class that provides built-in
session tracking functionality and a Cookie class that allows you to quickly set up
and process HTTP cookies.

Page Generation

The most basic type of HTTP servlet generates a full HTML page. Such a servlet
has access to the same information usually sent to a CGI script, plus a bit more. A
servlet that generates an HTML page can be used for all the tasks where CGI is
used currently, such as for processing HTML forms, producing reports from a
database, taking orders, checking identities, and so forth.

Writing Hello World

Example 2-1 shows an HTTP servlet that generates a complete HTML page. To
keep things as simple as possible, this servlet just says “Hello World” every time it is
accessed via a web browser.”

Example 2-1. A servlet that prints “Hello World”

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWorld extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType ("text/html") ;
PrintWriter out = res.getWriter();

* Fun trivia: the first instance of a documented “Hello World” program appeared in A Tutorial Introduc-
tion to the Language B, written by Brian Kernighan in 1973. For those too young to remember, B was a
pre-cursor to C. You can find more information on the B programming language and a link to the tu-
torial at http://cm.bell-labs.com/who/dmr/bintro. html.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

20 CHAPTER 2: HTTP SERVLET BASICS

Example 2-1. A servlet that prints “Hello World” (continued)

out.println ("<HTML>") ;

out.println ("<HEAD><TITLE>Hello World</TITLE></HEAD>") ;
out.println("<BODY>") ;

out.println("<BIG>Hello World</BIG>") ;
out.println("</BODY></HTML>") ;

}

This servlet extends the HttpServlet class and overrides the doGet () method
inherited from it. Each time the web server receives a GET request for this servlet,
the server invokes this doGet () method, passing it an HttpServletRequest
object and an HttpServletResponse object.

The HttpServletRequest represents the client’s request. This object gives a
servlet access to information about the client, the parameters for this request, the
HTTP headers passed along with the request, and so forth. Chapter 4 explains the
full capabilities of the request object. For this example, we can completely ignore
it. After all, this servlet is going to say “Hello World” no matter what the request!

The HttpServletResponse represents the servlet’s response. A servlet can use
this object to return data to the client. This data can be of any content type,
though the type should be specified as part of the response. A servlet can also use
this object to set HTTP response headers. Chapter 5 and Chapter 6, Sending Multi-
media Content, explain everything a servlet can do as part of its response.

Our servlet first uses the setContentType () method of the response object to set
the content type of its response to “text/html”, the standard MIME content type
for HTML pages. Then, it uses the getWriter() method to retrieve a
PrintWriter, the internationalfriendly counterpart to a PrintStream
PrintWriter converts Java’s Unicode characters to a locale-specific encoding. For
an English locale, it behaves same as a PrintStream. Finally, the servlet uses this
PrintWriter to send its “Hello World” HTML to the client.

That’s it! That’s all the code needed to say hello to everyone who “surfs” to our
servlet.

Running Hello World

When developing servlets you need two things: the Servlet API class files, which are
used for compiling, and a servlet engine such as a web server, which is used for
deployment. To obtain the Servlet API class files, you have several options:

e Install the Java Servlet Development Kit (JSDK), available for free at http://java.
sun.com/products/servlet/. JSDK Version 2.0 contains the class files for the Serv-
let API 2.0, along with their source code and a simple web server that acts as a

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

PAGE GENERATION 21

servlet engine for HTTP servlets. It works with JDK 1.1 and later. (Note that
the JSDK is the Servlet API reference implementation, and as such its version
number determines the Servlet API version number.)

¢ Install one of the many full-featured servlet engines, each of which typically
bundles the Servlet API class files.

There are dozens of servlet engines available for servlet deployment, several of
which are listed in Chapter 1, Introduction. Why not use the servlet engine included
in JSDK 2.0? Because that servlet engine is bare-bones simple. It implements the
Servlet API 2.0 and nothing more. Features like robust session tracking, server-side
includes, servlet chaining, and JavaServer Pages have been left out because they
are technically not part of the Servlet API. For these features, you need to use a
full-fledged servlet engine like the Java Web Server or one of its competitors.

So, what do we do with our code to make it run in a web server? Well, it depends
on your web server. The examples in this book use Sun’s Java Web Server 1.1.1,
unofficially considered the reference implementation for how a web server should
support servlets. It’s free for educational use and has a 30-day trial period for all
other use. You can download a copy from http://java.sun.com/products or, for
educational use, hitp://www.sun.com/products-n-solutions/edu/java/. The Java Web
Server includes plenty of documentation explaining the use of the server, so while
we discuss the general concepts involved with managing the server, we’re leaving
the details to Sun’s documentation. If you choose to use another web server, these
examples should work for you, but we cannot make any guarantees.

If you are using the Java Web Server, you should put the source code for the
servlet in the server. root/servlets directory (where server. root is the directory
where you installed your server). This is the standard location for servlet class files.
Once you have the “Hello World” source code in the right location, you need to
compile it. The standard javac compiler (or your favorite graphical Java develop-
ment environment) can do the job. Just be sure you have the javax.servlet and
javax.servlet.http packages in your classpath. With the Java Web Server, all
you have to do is include server. root/lib/jws.jar (or a future equivalent) some-
where in your classpath.

Now that you have your first servlet compiled, there is nothing more to do but
start your server and access the servlet! Starting the server is easy. Look for the
hitpd script (or hittpd.exe program under Windows) in the server. root/bin direc-
tory. This should start your server if you’re running under Solaris or Windows. On
other operating systems, or if you want to use your own Java Runtime Environ-
ment (JRE), you’ll need to use Aitpd.nojre. In the default configuration, the server
listens on port 8080.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

22 CHAPTER 2: HTTP SERVLET BasIcs

There are several ways to access a servlet. For this example, we’ll do it by explicitly
accessing a URL with /servlet/ prepended to the servlet’s class name.” You can
enter this URL in your favorite browser: http://server:8080/serviet/HelloWorld.
Replace server with the name of your server machine or with localhost if the server
is on your local machine. You should see a page similar to the one shown in
Figure 2-3.

ello wWorld - Netscape

File Edit Wiew Go Communicator Help

Back Forward Reload Home Search Guide Frint Securty Stop
w!' Bookmarks LDCEtiDhZIhtl‘pi.-".-"|DC-E||"|DStZBUBU.-"SEI'WEUHE"DWDTH j

Hello World

=] | Document: Done
Figure 2-3. The Hello World servlet

If the servlet were part of a package, it would need to be placed in server. root/
servlets/package/name and referred to with the URL http://server:8080/ serviet/
package.name. HelloWorld.

An alternate way to refer to a servlet is by its registered name. This does not have to
be the same as its class name, although it can be. With the Java Web Server, you
register servlets via the JavaServer Administration Tool, an administration applet
that manages the server, usually available at hAttp://server:9090/. Choose to
manage the Web Service, go to the Servlets section, and then Add a new servlet.
Here you can specify the name of the new servlet and the class associated with that
name (on some servers the class can be an HTTP URL from which the servlet class
file will be automatically loaded). If we choose the name “hi” for our HelloWorld
servlet, we can then access it at the URL http://server:8080/servlet/hi. You may
wonder why anyone would bother adding a servlet to her server. The short answer
appropriate for Chapter 2 is that it allows the server to remember things about the
servlet and give it special treatment.

A third way to access a servlet is through a servlet alias. The URL of a servlet alias
looks like any other URL. The only difference is that the server has been told that
the URL should be handled by a particular servlet. For example, we can choose to
have http://server: 8080/ hello.html invoke the HelloWorld servlet. Using aliases in
this way can help hide a site’s use of servlets; it lets a servlet seamlessly replace an

* Beware, servlets are placed in a servlets (plural) directory but are invoked with a servlet (singular) tag.
If you think about it, this makes a certain amount of sense, as servlets go in the servlets directory while
a single servlet is referenced with the servlet tag.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

PAGE GENERATION 23

existing page at any given URL. To create a servlet alias, choose to manage the
Web Service, go to the Setup section, choose Servlet Aliases, and then Add the
alias.

Handling Form Data

The “Hello World” servlet is not very exciting, so let’s try something slightly more
ambitious. This time we’ll create a servlet that greets the user by name. It’s not
hard. First, we need an HTML form that asks the user for his or her name. The
following page should suffice:

<HTML>

<HEAD>

<TITLE>Introductions</TITLE>

</HEAD>

<BODY>

<FORM METHOD=GET ACTION="/servlet/Hello">
If you don't mind me asking, what is your name?
<INPUT TYPE=TEXT NAME="name"><P>

<INPUT TYPE=SUBMIT>

</FORM>

</BODY>

</HTML>

Figure 2-4 shows how this page appears to the user.

Introductions - Metscape

File Edit Wiew Go Communicator Help

2 2 A D s o & @

Back Forward Reload Home Search Guide Frint Securty Stop
J'Bnokmarks .15 anation:Ihttp:.n’.n’lnc:alhost:BEIBEI.n’fc-rm.html j

If you don't mind me asling, what 15 your name?

Submit Query |

=] | Document: Done
Figure 2-4. An HTML form

When the user submits this form, his name is sent to the Hello servlet because
we’ve set the ACTION attribute to point to the servlet. The form is using the GET
method, so any data is appended to the request URL as a query string. For
example, if the user enters the name “Inigo Montoya,” the request URL is Attp://
server:8080/servlet/Hello ?name=Inigo+Montoya. The space in the name is specially
encoded as a plus sign by the browser because URLs cannot contain spaces.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

24 CHAPTER 2: HTTP SERVLET BASICS

A servlet’s HttpServletRequest object gives it access to the form data in its query
string. Example 2-2 shows a modified version of our Hello servlet that uses its
request object to read the “name” parameter.

Example 2-2. A servlet that knows to whom it’s saying hello

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class Hello extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType ("text/html") ;
PrintWriter out = res.getWriter();

String name = reqg.getParameter ("name") ;

out.println ("<HTML>") ;

out.println("<HEAD><TITLE>Hello, " + name + "</TITLE></HEAD>");
out.println("<BODY>") ;

out.println("Hello, " + name);

out.println("</BODY></HTML>") ;

public String getServletInfo() {
return "A servlet that knows the name of the person to whom it's" +
"saying hello";

This servlet is nearly identical to the HelloWorld servlet. The most important
change is that it now calls req.getParameter ("name") to find out the name of
the user and that it then prints this name instead of the harshly impersonal (not to
mention overly broad) “World”. The getParameter () method gives a servlet
access to the parameters in its query string. It returns the parameter’s decoded
value or null if the parameter was not specified. If the parameter was sent but
without a value, as in the case of an empty form field, getParameter () returns
the empty string.

This servlet also adds a getServletInfo() method. A servlet can override this
method to return descriptive information about itself, such as its purpose, author,
version, and/or copyright. It’s akin to an applet’s getAppletInfo (). The method
is used primarily for putting explanatory information into a web server administra-
tion tool. You’ll notice we won’t bother to include it in future examples because it
is clutter for learning.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

PAGE GENERATION 25

The servlet’s output looks something like what is shown in Figure 2-5.

ello. Inigo Montoya - Netscape

File Edit Wiew Go Communicator Help

2 2 A D} s o & @

Back Fonward Reload Home Seach Guide Frint Securty Stop
w!' Bookmarks \eﬁ_ anation:|http:.n’.n’lncalhost:BEIBEI.n’servIet.f'Hello?name=lnigo+Montoya j

Hello, Inigo Montoya

=] |Document: Done
Figure 2-5. The Hello servlet using form data

Handling POST Requests

You’ve now seen two servlets that implement the doGet () method. Now let’s
change our Hello servlet so that it can handle POST requests as well. Because we
want the same behavior with POST as we had for GET, we can simply dispatch all
POST requests to the doGet () method with the following code:

public void doPost (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
doGet (req, res);

}
Now the Hello servlet can handle form submissions that use the POST method:
<FORM METHOD=POST ACTION="/servlet/Hello">

In general, it is best if a servlet implements either doGet () or doPost (). Deciding
which to implement depends on what sort of requests the servlet needs to be able
to handle, as discussed earlier. The code you write to implement the methods is
almost identical. The major difference is that doPost () has the added ability to
accept large amounts of input.

You may be wondering what would have happened had the Hello servlet been
accessed with a POST request before we implemented doPost (). The default
behavior inherited from HttpServlet for both doGet () and doPost() is to
return an error to the client saying the requested URL does not support that
method.

Handling HEAD Requests

A bit of under-the-covers magic makes it trivial to handle HEAD requests (sent by a
client when it wants to see only the headers of the response). There is no

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

26 CHAPTER 2: HTTP SERVLET BASICS

doHead () method to write. Any servlet that subclasses HttpServlet and imple-
ments the doGet () method automatically supports HEAD requests.

Here’s how it works. The service() method of the HttpServlet identifies
HEAD requests and treats them specially. It constructs a modified
HttpServletResponse object and passes it, along with an unchanged request, to
the doGet () method. The doGet () method proceeds as normal, but only the
headers it sets are returned to the client. The special response object effectively
suppresses all body output.” Figure 2-6 shows how an HTTP servlet handles HEAD
requests.

Web Server HttpServlet subclass

GET request ——————
(L P ——

POST request
resp%nse - S

HEAD request //
response « S
KEY: [implemented by subelass |

Body suppressed

Figure 2-6. An HT'TP servlet handling a HEAD request

Although this strategy is convenient, you can sometimes improve performance by
detecting HEAD requests in the doGet () method, so that it can return early,
before wasting cycles writing output that no one will see. Example 2-3 uses the
request’s getMethod () method to implement this strategy (more properly called
a hack) in our Hello servlet.

Example 2-3. The Hello servlet modified to return quickly in response to HEAD requests

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class Hello extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

// Set the Content-Type header
res.setContentType ("text/html") ;

* Jason is proud to report that Sun added this feature in response to comments he made during beta
testing.

Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SERVER-SIDE INCLUDES 27

Example 2-3. The Hello servlet modified to return quickly in response to HEAD requests (continued)

// Return early if this is a HEAD
if (reqg.getMethod().equals("HEAD")) return;

// Proceed otherwise

PrintWriter out = res.getWriter();

String name = reqg.getParameter ("name") ;

out.println ("<HTML>") ;

out.println("<HEAD><TITLE>Hello, " + name + "</TITLE></HEAD>");
out.println("<BODY>") ;

out.println("Hello, " + name);

out.println("</BODY></HTML>") ;

}

Notice that we set the Content-Type header, even if we are dealing with a HEAD
request. Headers such as these are returned to the client. Some header values,
such as Content-Length, may not be available until the response has already
been calculated. If you want to be accurate in returning these header values, the
effectiveness of this shortcut is limited.

Make sure that you end the request handling with a return statement. Do not call
System.exit (). If you do, you risk exiting the web server.

Server-Side Includes

All the servlets you've seen so far generate full HTML pages. If this were all that
servlets could do, it would still be plenty. Servlets, however, can also be embedded
inside HTML pages with something called server-side include (SSI) functionality.

In many servers that support servlets, a page can be preprocessed by the server to
include output from servlets at certain points inside the page. The tags used for a
server-side include look similar to those used for applets:*

<SERVLET CODE=ServletName CODEBASE=http://server:port/dir
initParaml=initValuel initParam2=initValue2>
<PARAM NAME=paraml VALUE=valuel>
<PARAM NAME=param2 VALUE=value2>
If you see this text, it means that the web server
providing this page does not support the SERVLET tag.
</SERVLET>

* Currently, the <SERVLET> tag syntax varies across server implementations. This section describes the
syntax appropriate for the Java Web Server.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

28 CHAPTER 2: HTTP SERVLET BASICS

The CODE attribute specifies the class name or registered name of the servlet to
invoke. The CODEBASE attribute is optional. It can refer to a remote location from
which the servlet should be loaded. Without a CODEBASE attribute, the servlet is
assumed to be local.

Any number of parameters may be passed to the servlet using the <PARAM> tag.
The servlet can retrieve the parameter values using the getParameter () method
of ServletRequest. Any number of initialization (init) parameters may also be
passed to the servlet appended to the end of the <SERVLET> tag. We’ll cover init
parameters in Chapter 3, The Serviet Life Cycle.

A server that supports SSI detects the <SERVLET> tag in the process of returning
the page and substitutes in its place the output from the servlet (as shown in
Figure 2-7). The server does not parse every page it returns, just those that are
specially tagged. The Java Web Server, by default, parses only pages with an .shtml
extension. Note that with the <SERVLET> tag, unlike the <APPLET> tag, the client
browser never sees anything between <SERVLET> and </SERVLET>—unless the
server does not support SSI, in which case the client receives the content, ignores
the unrecognized tags, and displays the descriptive text.

shiml file

Web Server <HTML>
<HEAD>

request ——— > < HEAD>

—
<BODY> Servlet]
.), |

response < <SERVLET CODE=Servletl>
J </SERVLET>

</BODY>
</HTML>

Figure 2-7. Server-side include expansion

Writing a Server-Side Include

Server-side includes are useful when a page is primarily static but contains a few
distinct dynamic portions. For a simple example, let’s assume we have several
pages that need to display the current time. As an extra challenge, let’s assume
that sometimes we need the current time in time zones other than our own.

The problem is easy with server-side includes. Each page can be written as a static
HTML page with one or more SSI directives that call Java code to provide the

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SERVER-SIDE INCLUDES 29

times. The HTML could look something like this, saved to a file with an .shtml
extension:

<HTML>
<HEAD><TITLE>Times!</TITLE></HEAD>
<BODY>

The current time here is:

<SERVLET CODE=CurrentTime>
</SERVLET>

<P>

The current time in London is:
<SERVLET CODE=CurrentTime>

<PARAM NAME=zone VALUE=GMT>
</SERVLET>

<pP>

And the current time in New York is:
<SERVLET CODE=CurrentTime>

<PARAM NAME=zone VALUE=EST>
</SERVLET>

<P>

</BODY>

</HTML>

The servlet named CurrentTime can be plugged into any page that needs a time
display. The name can be either the servlet’s class name or its registered name.
The servlet code is shown in Example 2-4.

Example 2-4. A server-side include that prints the current time

import java.io.*;

import java.text.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class CurrentTime extends HttpServlet ({

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

PrintWriter out = res.getWriter();

Date date = new Date();
DateFormat df = DateFormat.getInstance();

String zone = req.getParameter ("zone") ;

if (zone != null) {
TimeZone tz = TimeZone.getTimeZone (zone) ;
df .setTimeZone (tz) ;

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

30 CHAPTER 2: HTTP SERVLET BASICS

Example 2-4. A server-side include that prints the current time (continued)

out.println(df.format (date)) ;

}

The CurrentTime servlet looks strikingly similar to the Hello servlet. This is not a
coincidence. There is no real difference between a servlet that handles full-page
GET requests and one that is embedded in a page, except that embedded servlets
have limited response capabilities. For example, an embedded servlet cannot set
HTTP headers.

The only method CurrentTime implements is the doGet () method. All SSI serv-
lets use either doGet () or service() to handle requests. Inside the method, the
servlet first retrieves its PrintWriter.” This early retrieval is perhaps unnecessary;
it could be retrieved as late as the next to last line. Still, we recommend fetching it
first thing. It will save time later when you find you need to begin sending output
sooner than you expected.

Then the servlet gets the current Date and a DateFormat instance with which to
display the time. This servlet’s ability to hop time zones is based on functionality in
DateFormat. The servlet simply tells the DateFormat which time zone to use, and
the date is displayed appropriately.

The time zone is specified by the <PARAM> tag in the HTML file. The servlet gains
access to this parameter with the getParameter() method of
HttpServletRequest. This technique is identical to the one we used to retrieve
form data. The servlet uses the value of the “zone” parameter to create a
TimeZone object that can be passed to the DateFormat object. If the “zone”
parameter is not specified, as is the case with the first SSI example on our page,
getParameter () returns null and the DateFormat uses the default time zone.
Finally, the servlet outputs the String created when the DateFormat object
formats the current date. The output of the HTML page is shown in Figure 2-8.

Servlet Chaining and Filters

Now you’ve seen how an individual servlet can create content by generating a full
page or by being used in a server-side include. Servlets can also cooperate to create
content in a process called servlet chaining.

* The Java Web Server 1.1.1 has a bug where the PrintWriter returned by the getWriter () method
of ServletRequest does not generate output for a servlet used as a server side include. This means
that to run the SSI examples shown in the book you need to use another servlet engine; or you can
change the examples to manually create a PrintWriter as follows: PrintWriter out = new Print
Writer (res.getOutputStream(), true);

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SERVLET CHAINING AND FILTERS 31

File Edit “iew Go Communicator

2 » A H 2 £ S &£

Back Fomward Reload Home Search Guide Print Security Stop

The current time here is; 6/8,/98 6,00 FPI

The current time in London is: /9798 1:00 Al

And the current time in New York is: £/8/98 S:00 Flv

i

Figure 2-8. At the beep the current time will be...

In many servers that support servlets, a request can be handled by a sequence of
servlets. The request from the client browser is sent to the first servlet in the chain.
The response from the last servlet in the chain is returned to the browser. In
between, the output from each servlet is passed (piped) as input to the next
servlet, so each servlet in the chain has the option to change or extend the
content, as shown in Figure 2-9.*

There are two common ways to trigger a chain of servlets for an incoming request.
First, you can tell the server that certain URLs should be handled by an explicitly
specified chain. Or, you can tell the server to send all output of a particular
content type through a specified servlet before it is returned to the client, effec-
tively creating a chain on the fly. When a servlet converts one type of content into
another, the technique is called filtering.

Servlet chaining can change the way you think about web content creation. Here
are some of the things you can do with it:

Quickly change the appearance of a page, a group of pages, or a type of content.
For example, you can improve your site by suppressing all <BLINK> tags from
the pages of your server, as shown in the next example. You can speak to those
who don’t understand English by dynamically translating the text from your
pages to the language read by the client. You can suppress certain words that
you don’t want everyone to read, be they the seven dirty words or words not

* A web server could implement servlet chaining differently than described here. There is no reason
the initial content must come from a servlet. It could come from a static file fetched with built-in server
code or even from a CGI script. The Java Web Server does not have to make this distinction because
all its requests are handled by servlets.

Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

32

CHAPTER 2: HTTP SERVLET BASICS

Web Server
requesf —— » Servletl
'
Servlet2
v
response <—— Servlet3

Figure 2-9. Servlet chaining

everyone knows already, like the unreleased name of your secret project. You
could also suppress entire pages in which these words appear. You can
enhance certain words on your site, so that an online news magazine could
have a servlet detect the name of any Fortune 1000 companies and automati-
cally make each company name a link to its home page.

Take a kernel of content and display it in special formats.

For example, you can embed custom tags in your page and have a servlet
replace them with HTML content. Imagine an <SQL> tag whose query
contents are executed against a database and whose results are placed in an
HTML table. This is, in fact, similar to how the Java Web Server supports the
<SERVLET> tag.

Support esoteric data types.

For example, you can serve unsupported image types with a filter that converts
nonstandard image types to GIF or JPEG.

You may be asking yourself, why you would want to use a servlet chain when you

could instead write a script that edits the files in place—especially when there is an

additional amount of overhead for each servlet involved in handling a request?
The answer is that servlet chains have a threefold advantage:

They can easily be undone, so when users riot against your tyranny of remov-
ing their <BLINK> freedom, you can quickly reverse the change and appease
the masses.

They handle dynamically created content, so you can trust that your restric-
tions are maintained, your special tags are replaced, and your dynamically
converted PostScript images are properly displayed, even in the output of a
servlet (or a CGI script).

They handle the content of the future, so you don’t have to run your script
every time new content is added.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SERVLET CHAINING AND FILTERS 33

Creating a Servlet Chain

Our first servlet chain example removes <BLINK> tags from HTML pages. If you're
not familiar with the <BLINK> tag, be thankful. It is a tag recognized by many
browsers in which any text between the <BLINK> and </BLINK> tags becomes a
flashing distraction. Sure, it’s a useful feature when used sparingly. The problem is
that many page authors use it far too often. It has become the joke of HTML.

Example 2-5 shows a servlet that can be used in a servlet chain to remove the
<BLINK> tag from all of our server’s static HTML pages, all its dynamically created
HTML pages, and all the pages added to it in the future. This servlet introduces
the getReader () and getContentType () methods.

Example 2-5. A servlet that removes the <BLINK> tag from HTML pages

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class Deblink extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

String contentType = req.getContentType(); // get the incoming type
if (contentType == null) return; // nothing incoming, nothing to do
res.setContentType (contentType); // set outgoing type to be incoming type

PrintWriter out = res.getWriter();
BufferedReader in = reqg.getReader () ;

String line = null;

while ((line = in.readLine()) != null) {
line = replace(line, "<BLINK>", "");
line = replace(line, "</BLINK>", "");
out.println(line);

public void doPost (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
doGet (req, res);

private String replace(String line, String oldString, String newString) {
int index = 0;
while ((index = line.indexOf (0ldString, index)) >= 0) {
// Replace the old string with the new string (inefficiently)

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

34 CHAPTER 2: HTTP SERVLET BASICS

Example 2-5. A servlet that removes the <BLINK> tag from HTML pages (continued)

line = line.substring(0, index) +
newString +
line.substring(index + oldString.length());
index += newString.length();
}

return line;

}

This servlet overrides both the doGet () and doPost () methods. This allows it to
work in chains that handle either type of request. The doGet () method contains
the core logic, while doPost () simply dispatches to doGet (), using the same tech-
nique as the Hello example.

Inside doGet (), the servlet first fetches its print writer. Next, the servlet calls req.
getContentType () to find out the content type of the data it is receiving. It sets
its output type to match, or if getContentType () returned null, it realizes there
is no incoming data to deblink and simply returns. To read the incoming data, the
servlet fetches a BufferedReader with a call to req.getReader (). The reader
contains the HTML output from the previous servlet in the chain. As the servlet
reads each line, it removes any instance of <BLINK> or </BLINK> with a call to
replace() and then returns the line to the client (or perhaps to another servlet
in the chain). Note that the replacement is case-sensitive and inefficient; a solu-
tion to this problem that uses regular expressions is included in Chapter 13, Odds
and Ends.

A more robust version of this servlet would retrieve the incoming HTTP headers
and pass on the appropriate headers to the client (or to the next servlet in the
chain). Chapter 4 and Chapter 5 explain the handling and use of HTTP headers.
There’s no need to worry about it now, as the headers aren’t useful for simple
tasks like the one we are doing here.

Running Deblink

If you're using the Java Web Server, before running Deblink you have to first tell
the web server you want servlet chains enabled. Go to managing the Web Service,
go to the Setup section, select Site, and then select Options. Here you can turn
servlet chaining on. By default it’s turned off to improve performance.

As we said before, there are two ways to trigger a servlet chain. A chain can be
explicitly specified for certain requests, or it can be created on the fly when one
servlet returns a content type that another servlet is registered to handle. We’ll use
both techniques to run Deblink.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SERVLET CHAINING AND FILTERS 35

First, we’ll explicitly specify that all files with a name matching the wildcard
pattern *html should be handled by the file servlet followed by the Deblink
servlet. The file servlet is a core Java Web Server servlet used to retrieve files.
Normally it is the only servlet invoked to return an HTML file. But here, we’re
going to pass its output to Deblink before returning the HTML to the client. Go
back to managing the Web Service, go to the Setup section, and select Servlet
Aliases. Here you will see which servlets are invoked for different kinds of URLs, as
shown in Figure 2-10.

Fife Edit View Go Bookmarks Options Directory Window Help

|Back” Fol

g

:ﬂ||:i:\,.:‘::| |Re\oad||_oad \mages”Open.‘.”Prinl.””Find.”|

Location: | http://localhost: 9898/

. Setup Moritor | Security | Servlets Help
JAVA
A Setup [Alias f
Network oy
e]
sie
Service Tunin "isp
Services Status ‘Pm’t |Ne 4 o
File Aliases shoml ssinclude
3 Java Weh Server Runining Servlet Aliases i tile
LG8 Web Service Running ilhi) Virtual Hosts P T
Lgs Web 8 Mot Runnin 7070
E:Pe:ures eh Service NmRunmng fhts MIME Types iog-bin ca
roxy Service Log Files
4 S H feounter.html counter
access E
agent {fdate.txt dateserdet B
ermor fimagemap imagemap
avent Noganalyzer logenalyzer
referer ‘phone.homl phone
pserviet himnl pserviet
servlet invoker
fsession hrml session
ienoop.hunl snosp =
‘ Manage I | Restart I ‘ Stop
| Add I | Modify I | Remove I ‘ Save I ‘ I
n
s s
melUnsigned Java Applet Window
= e =

Figure 2-10. Standard servlet aliases

These mappings provide some insight into how the Java Web Server uses its core
servlets. You can see / invokes file, *.shiml invokes ssinclude, and /servlet
invokes invoker. The most specific wildcard pattern is used, which is why /servlet
uses the invoker servlet to launch a servlet instead of using the file servlet to
return a file. You can change the default aliases or add new aliases. For example,
changing the /servlet prefix would change the URL used to access servlets. Right
now, we’re interested in adding another alias. You should add an alias that speci-
fies that * html invokes file, Deblink. After making this change, any file ending
in .html is retrieved by the file servlet and passed to Deblink.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

36 CHAPTER 2: HTTP SERVLET BASICS

Try it yourself. Create a blinky.html file in server. root/public_html that is sprin-
kled with a few blink tags and try surfing to hitp://server:8080/blinky.himl. If
everything’s set up right, all evidence of the blink tags is removed.

The Loophole

This technique has one large loophole: not all HTML comes from files with the .
html extension. For example, HTML can come from a file with the .A¢m extension
or from some dynamically created HTML. We can work around multiple file
extensions with more aliases. This, however, still doesn’t catch dynamic content.
We need our second technique for creating a servlet chain to plug that hole.

We really want to specify that all text/html content should pass through the
Deblink servlet. The JavaServer Administration Tool does not yet include a graph-
ical way to do this. Instead, we can make the change with a simple edit of a
properties file. The properties file can be found at server. root/properties/server/
Jjavawebserver/webpageservice/mimeservlets. properties. It contains directives like this:

java-internal /parsed-html=ssinclude

This directive indicates that all responses with a Content-Type header of java-
internal /parsed-html should be passed to the ssinclude (server-side include)
servlet. Why is this necessary? Without it, the ssinclude servlet would handle only
static files with the .shtml extension. It would suffer from the same loophole:
dynamically created pages containing the <SERVLET> tag would be ignored. With
this directive, any servlet can set its content type to java-internal/parsed-
html, which causes the ssinclude servlet to handle its output.

To specify that all text/html content is passed through Deblink, we need to add
our own directive:

text/html=Deblink
You need to restart your server before this change can take effect.

After making this change, all HTML content served by the server has its <BLINK>
tags removed.” Try it yourself! Change your HelloWorld servlet to <BLINK> its
message and watch the Deblink servlet silently remove all evidence of the deed.

* Unfortunately, some servers (including the Java Web Server 1.1.1) have a bug where they are too smart
for their own good. They literally feed all text/html content to the Deblink servlet—even the text/
html content being output by the Deblink servlet itself! In other words, every HTML page is de-
blinked forever (or until the client stops the request, whichever comes first).

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

JAVASERVER PAGES 37

JavaServer Pages

Just as this book was going to press, Sun announced a new way to use servlets,
called JavaServer Pages (commonly, but not officially, referred to as JSP). JSP’s
functionality and syntax bear a remarkable resemblance to Active Server Pages
(ASP).

JSP operates in many ways like server-side includes. The main difference is that
instead of embedding a <SERVLET> tag in an HTML page, JSP embeds actual snip-
pets of servlet code. It’s an attempt by Sun to separate content from presentation,
more convenient than server-side includes for pages that have chunks of dynamic
content intermingled with static content in several different places.

Just like server-side includes and servlet chaining, JSP doesn’t require any changes
to the Servlet API. But it does require special support in your web server. This
support is not included in the Java Web Server 1.1.1 (the unofficially considered
reference servlet engine against which this book is written), but it’s expected to be
introduced in the next version of the Java Web Server, probably 1.2, and in other
servlet engines as they keep pace.

Note that the following tutorial is based on the JavaServer Pages draft specifica-
tion, version 0.91. You may notice small changes in the final specification.

Using JavaServer Pages

At its most basic, JSP allows for the direct insertion of servlet code into an other-
wise static HTML file. Each block of servlet code (called a scriptlet) is surrounded
by a leading <% tag and a closing %> tag.” For convenience, a scriptlet can use four
predefined variables:

request
The servlet request, an HttpServletRequest object

response
The servlet response, an HttpServletResponse object

out
The output writer, a PrintWriter object
in
The input reader, a Buf feredReader object
Example 2-6 shows a simple JSP page that says “Hello” in a manner similar to

Example 2-2, though with a lot less code. It makes use of the predefined request
and out variables.

* An earlier technology, called Page Compilation, uses <JAVA> and </JAVA> tags and a different inter-
nal syntax. Page Compilation has been deprecated in favor of JavaServer Pages.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

38 CHAPTER 2: HTTP SERVLET BASICS

If you have a server that supports JavaServer Pages and want to test this page, you
should place the file under the server’s document root (probably server. root/
public_html) and save it with a special extension. By default, this extension for JSP
pages is .jsp. Assuming you have saved the page as hellol.jsp, you can then access it
at the URL http://sexrver:port/hellol.jsp. A screen shot is shown in Figure 2-11.

Example 2-6. Saying Hello with JSP

<HTML>

<HEAD><TITLE>Hello</TITLE></HEAD>

<BODY>

<H1>

<%

if (request.getParameter ("name") == null) {
out.println("Hello World") ;

}

else {
out.println("Hello, " + request.getParameter ("name")) ;

}

%>

</H1>

</BODY></HTML>

ello - Netscape

File Edit Wiew Go Communicator Help

Back Fonward Reload Home Seach Guide Frint Securty Stop
W!' Bookmarks \,ﬁ Location:Ihttp:!flocalhost:BElBElfhelld.isp?name=D0||_l,J j

Hello, Dolly

E| | Document: Done
Figure 2-11. Saying Hello using JavaServer Pages

Behind the Scenes

How does JSP work? Behind the scenes, the server automatically creates, compiles,
loads, and runs a special servlet to generate the page’s content, as shown in
Figure 2-12. You can think of this special servlet as a background, workhorse
servlet. The static portions of the HTML page are generated by the workhorse
servlet using the equivalent of out.println() calls, while the dynamic portions

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

JAVASERVER PAGES 39

are included directly. For example, the servlet shown in Example 2-7 might be the
background workhorse for hellol.jsp.*

Example 2-7. The workhorse servlet for hellol.jsp

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class _hellol_xjsp extends HttpServlet {

public void service (HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
response.setContentType ("text/html") ;
PrintWriter out = response.getWriter();
BufferedReader in = request.getReader();

out.println ("<HTML>") ;
out.println ("<HEAD><TITLE>Hello</TITLE></HEAD>") ;
out.println("<BODY>") ;
out.println("<H1>");
if (request.getParameter ("name") == null) {
out.println("Hello World") ;
}
else {
out.println("Hello, " + request.getParameter ("name")) ;
}
out.println("</H1>");
out.println("</BODY></HTML>") ;

The first time you access a JSP page, you may notice that it takes a short time to
respond. This is the time necessary for the server to create and compile the back-
ground servlet. Subsequent requests should be as fast as ever because the server
can reuse the servlet. The one exception is when the .jsp file changes, in which
case the server notices and recompiles a new background servlet. If there’s ever an
error in compiling, you can expect the server to somehow report the problem,
usually in the page returned to the client.

* If you're interested in seeing the true servlet source code for a JSP page, poke around the directories
under your server root. After all, the server needs to save the Java source code somewhere before com-
piling it! If you find the true servlet source, you're likely to see that it is far more complicated and
convoluted than what is shown here.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

40 CHAPTER 2: HTTP SERVLET BASICS

jsp file
Web Server ML
<HEAD>
request ——— . Java
<\HEAD> Compiler
= <BODY> —_—
response «——--- :
\/ <% . . .O%>
<\ BODY>
<\HTML>
y
Servlet

Figure 2-12. Generating JavaServer Pages

Expressions and Directives

In addition to scriptlets, JavaServer Pages allow the use of expressions and directives.
A JSP expression begins with <%= and ends with %>. Any Java expression between
the two tags is evaluated, the result is converted to a String, and the text is
included directly in the page. This technique eliminates the clutter of an out.
println() call. For example, <%= foo %> includes the value of the foo variable.

A JSP directive begins with <%@ and ends with %>. A directive allows a JSP page to
control certain aspects of its workhorse servlet. Directives can be used to have the
workhorse servlet set its content type, import a package, extend a different super-
class, implement an interface, and handle either GET or POST requests. A
directive can even specify the use of a non-Java scripting language.

In between the directive tags certain key variables can be assigned values using the
following syntax:

<%@ varname = "value" %>
Here are the six variables you can set:

content_type
Specifies the content type of the generated page. For example:

<%@ content_type = "text/plain" %>

The default content type is “text/html”.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

JAVASERVER PAGES 41

import
Specifies a list of classes the servlet should import. Multiple classes can be
given in a comma-separated list or given through multiple import directives.
For example:

<%@ import = "java.io.*,java.util.Hashtable" %>

extends
Specifies the superclass the servlet should extend. For example:

<%@ extends = "CustomHttpServletSuperclass" %>
The default superclass is HttpServlet.

implements
Specifies a list of interfaces the servlet should implement. Multiple interfaces
can be given in a comma-separated list or given through multiple import
directives. For example:

<%@ implements = "Serializable" %>
The default behavior is to not implement anything.

method
Specifies the servlet method that should contain the generated code and
handle client requests. The default is “service”, which handles all requests.
For example:

<%@ method = "doPost" %>

language
Specifies the scripting language used by the back-end. The default language is
“java”. Some servers can choose to allow other languages. For example:

<%@ language = "java" %>

Example 2-8 shows a revised version of the Hello page that uses JSP expressions
and directives. It uses a method directive to indicate it should handle POST
requests, and it uses an expression to simplify its display of the name parameter.

Example 2-8. Saying Hello using JSP expressions and directives

<%@ method = "doPost" %>

<HTML>

<HEAD><TITLE>Hello</TITLE></HEAD>

<BODY>

<H1>

<% 1f (request.getParameter ("name") == null) { %>
Hello World

<% } else { %>

Hello, <%= request.getParameter ("name") %>
<% } >

</H1>

</BODY></HTML>

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

42 CHAPTER 2: HTTP SERVLET BASICS

The background workhorse servlet for this JSP page should look nearly identical
to Example 2-7, with the only difference that this servlet implements doPost ()
instead of service().

Declarations

Sometimes it’s necessary for a JSP page to define methods and nonlocal variables
in its workhorse servlet. For this there is a construct called a JSP declaration.

A declaration begins with a <SCRIPT RUNAT="server"> tag and ends with a </
SCRIPT> tag. In between the tags, you can include any servlet code that should be
placed outside the servlet’s service method. Example 2-9 demonstrates this with a
JSP page that uses a declaration to define the getName () method.

Example 2-9. Saying Hello using a JSP declaration

<HTML>
<HEAD><TITLE>Hello</TITLE></HEAD>
<BODY>

<H1>

Hello, <%= getName (request) %>
</H1>

</BODY>

</HTML>

<SCRIPT RUNAT="server">
private static final String DEFAULT NAME = "World";

private String getName (HttpServletRequest req) {
String name = req.getParameter ("name") ;
if (name == null)
return DEFAULT NAME;
else
return name;
}
</SCRIPT>

The background servlet created to generate this page might look like the servlet
shown in Example 2-10.

Example 2-10. The workhorse servlet for a J[SP page with a declaration
import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class _hello3_xjsp extends HttpServlet {

public void service (HttpServletRequest request, HttpServletResponse response)

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

JAVASERVER PAGES 43

Example 2-10. The workhorse servlet for a JSP page with a declaration (continued)

throws ServletException, IOException {
response.setContentType ("text/html") ;
PrintWriter out = response.getWriter();
BufferedReader in = request.getReader();

out.println ("<HTML>") ;
out.println ("<HEAD><TITLE>Hello</TITLE></HEAD>") ;
out.println("<BODY>") ;
out.println("<H1>");

("Hello, " + getName (request));
out.println("</H1>");
out.println("</BODY></HTML>") ;

out.println

private static final String DEFAULT NAME = "World";

private String getName (HttpServletRequest req) {
String name = req.getParameter ("name") ;
if (name == null)
return DEFAULT NAME;
else
return name;

JavaServer Pages and JavaBeans

One of the most interesting and powerful ways to use JavaServer Pages is in coop-
eration with JavaBeans components. JavaBeans are reusable Java classes whose
methods and variables follow specific naming conventions to give them added abil-
ities. They can be embedded directly in a JSP page using <BEAN> tags. A JavaBean
component can perform a well-defined task (execute database queries, connect to
a mail server, maintain information about the client, etc.) and make its resulting
information available to the JSP page through simple accessor methods.*

The difference between a JavaBeans component embedded in a JSP page and a
normal third-party class used by the generated servlet is that the web server can
give JavaBeans special treatment. For example, a server can automatically set a
bean’s properties (instance variables) using the parameter values in the client’s
request. In other words, if the request includes a name parameter and the server
detects through introspection (a technique in which the methods and variables of
a Java class can be programatically determined at runtime) that the bean has a

* For more information on JavaBeans, see http://java.sun.com/bean/ and the book Developing Java Beans
by Robert Englander (O’Reilly).

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

44 CHAPTER 2: HTTP SERVLET BASICS

name property and a setName (String name) method, the server can automati-
cally call setName () with the value of the name parameter. There’s no need for
getParameter ().

A bean can also have its scope managed automatically by the server. A bean can be
assigned to a specific request (where it is used once and destroyed or recycled) or
to a client session (where it’s automatically made available every time the same
client reconnects). Sessions and session tracking are covered in depth in
Chapter 7, Session Tracking.

A bean can even be implemented as a servlet! If the server detects that a bean
implements the javax.servlet.Servlet interface (either directly or by
extending GenericServlet or HttpServlet), it will call the bean’s service()
method once for each request and the bean’s init () method when the bean is
first created. The utility of this functionality is debatable, but it can be used by
beans that need to prepare somehow before handling requests.

Beans are embedded in a JSP page using the <BEAN> tag. It has the following
syntax:
<BEAN NAME="Ilookup name" VARNAME="alternate variable name"
TYPE="class or interface name" INTROSPECT="{yes|no}" BEANNAME="file name"
CREATE="{yes|no}" SCOPE="{request|session}">

<PARAM propertyl=valuel property2=value2>
</BEAN>

You can set the following attributes of the <BEAN> tag:

NAME
Specifies the name of the bean. This is the key under which the bean is saved
if its scope extends across requests. If a bean instance saved under this name
already exists in the current scope, that instance is used with this page. For
example:

NAME="userPreferences"

VARNAME
Specifies the variable name of the bean. This is the name used by the page to
refer to the bean and invoke its methods. For example:

VARNAME="prefs"

If not given, the variable name of the bean is set to the value of its name
attribute.

TYPE
Specifies the name of the bean’s class or interface type. For example:

TYPE="UserPreferencesBean"

The type defaults to java.lang.Object.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

JAVASERVER PAGES 45

INTROSPECT
Specifies if the server should set the bean’s properties using the parameter
values in the client’s request. Its value must be “yes” or “no”. The default is

«“, 2

yes”.

BEANNAME
Specifies the serialized file or class file that contains the bean, used when first
creating the bean. This is an optional attribute. For example:

BEANNAME="hellobean.ser"

CREATE
Specifies if the bean should be created if it doesn’t already exist. Its value must
be “yes” or “no”. The default is “yes”. If create is set to “no” and a preex-
isting instance isn’t found, an error is returned to the client.

SCOPE
Specifies if the bean should be assigned to a specific request (where it is used
once and destroyed or recycled) or to a client session (where it’s automati-
cally made available every time the same client reconnects, within a certain
time frame). Its value must be “request” or “session”. The default is
“request”.

Parameters can be passed to a bean as a list using a <PARAM> tags placed between
the opening <BEAN> tag and the closing </BEAN> tag. The parameter values are
used to set the bean’s properties using introspection.

Example 2-11 demonstrates the use of a JavaBeans component with a JSP page; it
says Hello with the help of a HelloBean.

Example 2-11. Saying Hello using a_JavaBean

<%@ import = "HelloBean" %>

<BEAN NAME="hello" TYPE="HelloBean"
INTROSPECT="yes" CREATE="yes" SCOPE="request">
</BEAN>

<HTML>
<HEAD><TITLE>Hello</TITLE></HEAD>
<BODY>

<H1>

Hello, <%= hello.getName() %>
</H1>

</BODY>

</HTML>

As you can see, using a JavaBeans component with JavaServer Pages greatly
reduces the amount of code necessary in the page. This allows a clean separation

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

46 CHAPTER 2: HTTP SERVLET BASICS

of content (the functionality the bean provides) from presentation (the HTML
structure of the page). By using a well-defined API to interact with the bean, even
nonprogrammers can write JSP pages.

The code for HelloBean is shown in Example 2-12. Its class file should be placed
in the server’s classpath (something like server. root/classes, although for the
Java Web Server you need to first create this directory).

Example 2-12. The HelloBean class

public class HelloBean {
private String name = "World";

public void setName (String name) {
this.name = name;

public String getName() {
return name;

This is about as simple a bean as you’ll ever see. It has a single name property that
is set using setName () and retrieved using getName (). The default value of name
is “Wor1d”, but when a request comes in that includes a NAME parameter, the prop-
erty is set automatically by the server with a call to setName(). To test the
mechanism, try browsing to htlp://server:port/hellobean.jsp. You should see
something similar to the screen shot in Figure 2-13.

ello - Netzcape

File Edit “iew Go Communicator Help

14 5 3 & 2 £ 35 & B

Back Fomward Reload Home Seach Guide Frnt Securty Stop

w!'Bookmarks \& Location:Ihttp:.n’.n’localhost:SDSDIheIIDbean.isp?name:Howan

[
Hello, Rowan :I
|
4

[|Document: Done

Figure 2-13. Saying Hello using JavaServer pages in cooperation with a_JavaBeans component

Moving On

We realize this chapter has been a whirlwind introduction to HTTP servlets. By
now, we hope you have a sense of the different ways you can use servlets to handle

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

MOoVING ON 47

a variety of web development tasks. Of course, servlets can do far more than say
“Hello World,” tell the time, and remove <BLINK> tags. Now that you’ve got your
feet wet, we can dive into the details and move on to more interesting applications.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

In this chapter:

* The Servlet
Alternative

* Servlet Reloading

* Init and Destroy

* Single-Thread Model

* Background
Processing

* Last Modified Times

The Servlet Life Cycle

The servlet life cycle is one of the most exciting features of servlets. This life cycle
is a powerful hybrid of the life cycles used in CGI programming and lower-level
NSAPI and ISAPI programming, as discussed in Chapter 1, Introduction.

The Servlet Alternative

The servlet life cycle allows servlet engines to address both the performance and
resource problems of CGI and the security concerns of low-level server API
programming. A servlet engine may execute all its servlets in a single Java virtual
machine (JVM). Because they are in the same JVM, servlets can efficiently share
data with each other, yet they are prevented by the Java language from accessing
one another’s private data. Servlets may also be allowed to persist between requests
as object instances, taking up far less memory than fullfledged processes.

Before we proceed too far, you should know that the servlet life cycle is highly flex-
ible. Servers have significant leeway in how they choose to support servlets. The
only hard and fast rule is that a servlet engine must conform to the following life
cycle contract:

1. Create and initialize the servlet.
2. Handle zero or more service calls from clients.

3. Destroy the servlet and then garbage collect it.

It’s perfectly legal for a servlet to be loaded, created, and instantiated in its own
JVM, only to be destroyed and garbage collected without handling any client
requests or after handling just one request. Any servlet engine that makes this a
habit, however, probably won’t last long on the open market. In this chapter we
describe the most common and most sensible life cycle implementations for HTTP
servlets.

48
Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE SERVLET ALTERNATIVE 49

A Single Java Virtual Machine

Most servlet engines want to execute all servlets in a single JVM. Where that JVM
itself executes can differ depending on the server, though. With a server written in
Java, such as the Java Web Server, the server itself can execute inside a JVM right
alongside its servlets.

With a single-process, multithreaded web server written in another language, the
JVM can often be embedded inside the server process. Having the JVM be part of
the server process maximizes performance because a servlet becomes, in a sense,
just another low-level server API extension. Such a server can invoke a servlet with
a lightweight context switch and can provide information about requests through
direct method invocations.

A multiprocess web server (which runs several processes to handle requests)
doesn’t really have the choice to embed a JVM directly in its process because there
is no one process. This kind of server usually runs an external JVM that its
processes can share. With this approach, each servlet access involves a heavy-
weight context switch reminiscent of FastCGI. All the servlets, however, still share
the same external process.

Fortunately, from the perspective of the servlet (and thus from your perspective, as
a servlet author), the server’s implementation doesn’t really matter because the
server always behaves the same way.

Instance Persistence

We said above that servlets persist between requests as object instances. In other
words, at the time the code for a servlet is loaded, the server creates a single class
instance. That single instance handles every request made of the servlet. This
improves performance in three ways:

¢ It keeps the memory footprint small.

* It eliminates the object creation overhead that would otherwise be necessary
to create a new servlet object. A servlet can be already loaded in a virtual
machine when a request comes in, letting it begin executing right away.

¢ It enables persistence. A servlet can have already loaded anything it’s likely to
need during the handling of a request. For example, a database connection
can be opened once and used repeatedly thereafter. It can even be used by a
group of servlets. Another example is a shopping cart servlet that loads in
memory the price list along with information about its recently connected cli-
ents. Yet another servlet may choose to cache entire pages of output to save
time if it receives the same request again.

Not only do servlets persist between requests, but so do any threads created by

servlets. This perhaps isn’t useful for the run-of-the-mill servlet, but it opens up

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

50 CHAPTER 3: THE SERVLET LIFE CYCLE

some interesting possibilities. Consider the situation where one background
thread performs some calculation while other threads display the latest results. It’s
quite similar to an animation applet where one thread changes the picture and
another one paints the display.

A Simple Counter

To demonstrate the servlet life cycle, we’ll begin with a simple example.
Example 3-1 shows a servlet that counts and displays the number of times it has
been accessed. For simplicity’s sake, it outputs plain text.

Example 3-1. A simple counter

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class SimpleCounter extends HttpServlet ({
int count = 0;

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType ("text/plain") ;
PrintWriter out = res.getWriter();
count++;
out.println("Since loading, this servlet has been accessed " +
count + " times.");

The code is simple—it just prints and increments the instance variable named
count—but it shows the power of persistence. When the server loads this servlet,
the server creates a single instance to handle every request made of the servlet.
That’s why this code can be so simple. The same instance variables exist between
invocations and for all invocations.

A Simple Synchronized Counter

From the servlet-developer’s perspective, each client is another thread that calls
the servlet via the service(), doGet(), or doPost() methods, as shown in
Figure 3-1.*

* Does it seem confusing how one servlet instance can handle multiple requests at the same time? If so,
it’s probably because when we picture an executing program we often see object instances performing
the work, invoking each other’s methods and so on. But, although this model works for simple cases,
it’s not how things actually work. In reality, all real work is done by threads. The object instances are
nothing more than data structures manipulated by the threads. Therefore, if there are two threads
running, it’s entirely possible that both are using the same object at the same time.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE SERVLET ALTERNATIVE 51

Web Server

request ———-.

'--,‘I[mzad

request ———»--..._ Thread

Servlet

request ————>"Thread

request " Thead

Figure 3-1. Many threads, one servlet instance

If your servlets only read from the request, write to the response, and save informa-
tion in local variables (that is, variables declared within a method), you needn’t
worry about the interaction among these threads. Once any information is saved
in nonlocal variables (that is, variables declared within a class but outside any
specific method), however, you must be aware that each of these client threads has
the ability to manipulate a servlet’s nonlocal variables. Without precautions, this
may result in data corruption and inconsistencies. For example, the
SimpleCounter servlet makes a false assumption that the counter incrementation
and output occur atomically (immediately after one another, uninterrupted). It’s
possible that if two requests are made to SimpleCounter around the same time,
each will print the same value for count. How? Imagine that one thread incre-
ments the count and just afterward, before the first thread prints the count, the
second thread also increments the count. Each thread will print the same count
value, after effectively increasing its value by 2." The order of execution goes some-
thing like this

count++ // Thread 1
count++ // Thread 2
out.println // Thread 1
out.println // Thread 2

Now, in this case, the inconsistency is obviously not a problem, but many other
servlets have more serious opportunities for errors. To prevent these types of prob-
lems and the inconsistencies that come with them, we can add one or more
synchronized blocks to the code. Anything inside a synchronized block or a

* Odd factoid: if count were a 64-bit long instead of a 32-bit int, it would be theoretically possible for
the increment to be only half performed at the time it is interrupted by another thread. This is because
Java uses a 32-bit wide stack.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

52 CHAPTER 3: THE SERVLET LIFE CYCLE

synchronized method is guaranteed not to be executed concurrently by another
thread. Before any thread begins to execute synchronized code, it must obtain a
monitor (lock) on a specified class. If another thread already has that monitor—
because it is already executing the same synchronized block or some other block
with the same monitor—the first thread must wait. All this is handled by the
language itself, so it’s very easy to use. Synchronization, however, should be used
only when necessary. On some platforms, it requires a fair amount of overhead to
obtain the monitor each time a synchronized block is entered. More importantly,
during the time one thread is executing synchronized code, the other threads may
be blocked waiting for the monitor to be released.

For SimpleCounter, we have four options to deal with this potential problem.
First, we could add the keyword synchronized to the doGet () signature:

public synchronized void doGet (HttpServletRequest req,
HttpServletResponse res)

This guarantees consistency by synchronizing the entire method, using the servlet
class as the monitor. In general, though, this is not the right approach because it
means the servlet can handle only one GET request at a time.

Our second option is to synchronize just the two lines we want to execute
atomically:

PrintWriter out = res.getWriter();
synchronized(this) {
count++;
out.println("Since loading, this servlet has been accessed " +
count + " times.");

}

This approach works better because it limits the amount of time this servlet spends
in its synchronized block, while accomplishing the same goal of a consistent count.
Of course, for this simple example, it isn’t much different than the first option.

Our third option is to create a synchronized block that performs all the work that
needs to be done serially, then use the results outside the synchronized block. For
our counter servlet, we can increment the count in a synchronized block, save the
incremented value to a local variable (a variable declared inside a method), then
print the value of the local variable outside the synchronized block:

PrintWriter out = res.getWriter();
int local_count;
synchronized(this) {
local_count = ++count;
}
out.println("Since loading, this servlet has been accessed " +
local_count + " times.");

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE SERVLET ALTERNATIVE 53

This change shrinks the synchronized block to be as small as possible, while still
maintaining a consistent count.

Our last option is to decide that we are willing to suffer the consequences of
ignoring synchronization issues. Sometimes the consequences are quite accept-
able. For this example, ignoring synchronization means that some clients may
receive a count that’s a bit off. Not a big deal, really. If this servlet were supposed
to return unique numbers, however, it would be a different story.

Although it’s not possible with this example, an option that exists for other serv-
lets is to change instance variables into local variables. Local variables are not
available to other threads and thus don’t need to be carefully protected from
corruption. At the same time, however, local variables are not persistent between
requests, so we can’t use them to store the persistent state of our counter.

A Holistic Counter

Now, the “one instance per servlet” model is a bit of a gloss-over. The truth is that
each registered name for a servlet (but not each alias) is associated with one
instance of the servlet. The name used to access the servlet determines which
instance handles the request. This makes sense because the impression to the
client should be that differently named servlets operate independently. The sepa-
rate instances are also a requirement for servlets that accept initialization
parameters, as discussed later in this chapter.

Our SimpleCounter example uses the count instance variable to track the
number of times it has been accessed. If, instead, it needed to track the count for
all instances (and thus all registered aliases), it can in some cases use a class, or
static, variable. These variables are shared across all instances of a class.
Example 3-2 demonstrates with a servlet that counts three things: the times it has
been accessed, the number of instances created by the server (one per name), and
the total times all of them have been accessed.

Example 3-2. A more holistic counter

import java.io.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class HolisticCounter extends HttpServlet {
static int classCount = 0; // shared by all instances

int count = 0; // separate for each servlet
static Hashtable instances = new Hashtable(); // also shared

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

54 CHAPTER 3: THE SERVLET LIFE CYCLE

Example 3-2. A more holistic counter (continued)

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType ("text/plain") ;
PrintWriter out = res.getWriter();

count++;
out.println("Since loading, this servlet instance has been accessed " +
count + " times.");

// Keep track of the instance count by putting a reference to this
// instance in a Hashtable. Duplicate entries are ignored.
// The size() method returns the number of unique instances stored.
instances.put (this, this);
out.println("There are currently " +

instances.size() + " instances.");

classCount++;
out.println("Across all instances, this servlet class has been " +
"accessed " + classCount + " times.");

}

This HolisticCounter tracks its own access count with the count instance vari-
able, the shared count with the classCount class variable, and the number of
instances with the instances hashtable (another shared resource that must be a
class variable). Sample output is shown in Figure 3-2.

File Edit “iew Go Communicator

2 w A4 H 2 £ S &
Back Fomward Reload Home Search Guide Print Security Stop
<& Bookmarks & Location: [ieep1//L0ealhost 18080 /serviee /aliseia) /

Since loading, this servlet instance has been accessed 4 times.
| There are currently 2 instances.
| Across all instances, this servlet class has been accessed 7 times.

|| |

Figure 3-2. Output from HolisticCounter

Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SERVLET RELOADING 55

Servlet Reloading

If you tried using these counters for yourself, you may have noticed that any time
you recompiled one, its count automatically began again at 1. Trust us—it’s not a
bug, it’s a feature. Most servers automatically reload a servlet after its class file
(under the default servlet directory, such as server. root/servlets) changes. It’s an
on-the-fly upgrade procedure that greatly speeds up the development-test cycle—
and allows for long server uptimes.

Servlet reloading may appear to be a simple feature, but it’s actually quite a trick—
and requires quite a hack. ClassLoader objects are designed to load a class just
once. To get around this limitation and load servlets again and again, servers use
custom class loaders that load servlets from the default servlets directory. This
explains why the servlet classes are found in server. root/serviets, even though
that directory doesn’t appear in the server’s classpath.

When a server dispatches a request to a servlet, it first checks if the servlet’s class
file has changed on disk. If it has changed, the server abandons the class loader
used to load the old version and creates a new instance of the custom class loader
to load the new version. Old servlet versions can stay in memory indefinitely (and,
in fact, other classes can still hold references to the old servlet instances, causing
odd side effects, as explained in Chapter 11, Interservlet Communication), but the
old versions are not used to handle any more requests.

Servlet reloading is not performed for classes found in the server’s classpath (such
as server._root/classes) because those classes are loaded by the core, primordial
class loader. These classes are loaded once and retained in memory even when
their class files change.

It’s generally best to put servlet support classes (such as the utility classes in com.
oreilly.servlet) somewhere in the server’s classpath (such as server. root/
classes) where they don’t get reloaded. The reason is that support classes are not
nicely reloaded like servlets. A support class, placed in the default servlets direc-
tory and accessed by a servlet, is loaded by the same class loader instance that
loaded the servlet. It doesn’t get its own class loader instance. Consequently, if the
support class is recompiled but the servlet referring to it isn’t, nothing happens.
The server checks only the timestamp on servlet class files.”

A frequently used trick to improve performance is to place servlets in the default
servlet directory during development and move them to the server’s classpath for

* For the daredevils out there, here’s a stunt you can try to force a support class reload. Put the support
class in the servlet directory. Then convince the server it needs to reload the servlet that uses the sup-
port class (recompile it or use the Unix utility touch). The class loader that reloads the servlet should
also load the new version of the support class.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

56 CHAPTER 3: THE SERVLET LIFE CYCLE

deployment. Having them out of the default directory eliminates the needless
timestamp comparison for each request.

Init and Destroy

Just like applets, servlets can define init () and destroy() methods. A servlet’s
init (ServletConfig) method is called by the server immediately after the
server constructs the servlet’s instance. Depending on the server and its configura-
tion, this can be at any of these times:

e When the server starts

* When the servlet is first requested, just before the service() method is
invoked

¢ Atthe request of the server administrator

In any case, init () is guaranteed to be called before the servlet handles its first
request.

The init () method is typically used to perform servlet initialization—creating or
loading objects that are used by the servlet in the handling of its requests. Why not
use a constructor instead? Well, in JDK 1.0 (for which servlets were originally
written), constructors for dynamically loaded Java classes (such as servlets)
couldn’t accept arguments. So, in order to provide a new servlet any information
about itself and its environment, a server had to call a servlet’s init () method
and pass along an object that implements the ServletConfig interface. Also, Java
doesn’t allow interfaces to declare constructors. This means that the javax.
servlet.Servlet interface cannot declare a constructor that accepts a
ServletConfig parameter. It has to declare another method, like init (). It’s
still possible, of course, for you to define constructors for your servlets, but in the
constructor you don’t have access to the ServletConfig object or the ability to
throw a ServletException.

This ServletConfig object supplies a servlet with information about its initializa-
tion (init) parameters. These parameters are given to the servlet itself and are not
associated with any single request. They can specify initial values, such as where a
counter should begin counting, or default values, perhaps a template to use when
not specified by the request. In the Java Web Server, init parameters for a servlet
are usually set during the registration process. See Figure 3-3.

Other servers set init parameters in different ways. Sometimes it involves editing a
configuration file. One creative technique you can use with the Java Web Server,
but currently by no other servers, is to treat servlets as JavaBeans. Such servlets can
be loaded from serialized files or have their init properties set automatically by the

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

INIT AND DESTROY 57

File Edit View Go Bookmarks Options Directory Window Help

[etsci

‘Back”' s

| |F%e|uad” Load \mages”Open.HPrim”.||Find.”|

Location: I http://1ocalhost: 9898/

Java
[> 3

#SEME“ g Canfiguration l Properties]
o Add
2 Cuﬂﬁgﬂu:eth " | Froperty Valug 2 | add
candutharity —
ava Weh Server WIAGIE) counter
S Weh Service Running 8080 dateservlet
‘B SeCure Web Service Mot Running 7070 arror
@8 Proxy Service Mot Running BOB0 fle
imagemap
inwoker =
s
linkcheck,
Ioganalyzer
pageCompile
phone
poervlet
session ||
simpleserviet H
| Manage | | Restart | stap snoop
83 Load | | Remove | ‘ Beeva | |
asinclurie =

|

HslUnsigned Java Applet Window
S

Figure 3-3. Setting init parameters in the Java Web Server

server at load time using introspection. See the Java Web Server documentation
for more information.

The ServletConfig object also holds a reference to a ServletContext object
that a servlet may use to investigate its environment. See Chapter 4, Retrieving Infor-
mation, for a full discussion of this ability.

The server calls a servlet’s destroy () method when the servlet is about to be
unloaded. In the destroy() method, a servlet should free any resources it has
acquired that will not be garbage collected. The destroy () method also gives a
servlet a chance to write out its unsaved cached information or any persistent
information that should be read during the next call to init ().

A Counter with Init

Init parameters can be used for anything. In general, they specify initial values or
default values for servlet variables, or they tell a servlet how to customize its
behavior in some way. Example 3-3 extends our SimpleCounter example to read
an init parameter (named initial) that stores the initial value for our counter.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

58 CHAPTER 3: THE SERVLET LIFE CYCLE

Example 3-3. A counter that reads init parameters

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class InitCounter extends HttpServlet ({
int count;

public void init(ServletConfig config) throws ServletException {
super.init (config) ;
String initial = config.getInitParameter ("initial");

try {
count = Integer.parselnt (initial);
}
catch (NumberFormatException e) {
count = 0;

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType ("text/plain") ;
PrintWriter out = res.getWriter();
count++;
out.println("Since loading (and with a possible initialization");
out.println("parameter figured in), this servlet has been accessed");
out.println(count + " times.");

}

The init () method accepts an object that implements the ServletConfig inter-
face. It uses the config object’s getInitParameter () method to get the value for
the init parameter named initial. This method takes the name of the param-
eter as a String and returns the value as a String. There is no way to get the
value as any other type. This servlet therefore converts the String value to an int
or, if there’s a problem, defaults to a value of 0.

Take special note that the first thing the init () method does is call super.
init (config). Every servlet’s init() method must do this!

Why must the init () method call super.init (config)? The reason is that a
servlet is passed its ServletConfig instance in its init () method, but not in any
other method. This could cause a problem for a servlet that needs to access its
config object outside of init(). Calling super.init(config) solves this
problem by invoking the init () method of GenericServlet, which saves a refer-
ence to the config object for future use.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

INIT AND DESTROY 59

So, how does a servlet make use of this saved reference? By invoking methods on
itself. The GenericServlet class itself implements the ServletConfig interface,
using the saved config object in the implementation. In other words, after the call
to super.init(config), a servlet can invoke its own getInitParameter ()
method. That means we could replace the following call:

String initial = config.getInitParameter ("initial");
with:
String initial = getInitParameter ("initial");

This second style works even outside of the init() method. Just remember,
without the call to super.init (config) in the init () method, any call to the
GenericServlet’s implementation of getInitParameter() or any other
ServletConfig methods will throw a NullPointerException. So, let us say it
again: every servlet’s init() method should call super.init(config) as ils first action. The only
reason not to is if the servlet directly implements the javax.servlet.Servlet
interface, where there is no super.init ().

A Counter with Init and Destroy

Up until now, the counter examples have demonstrated how servlet state persists
between accesses. This solves only part of the problem. Every time the server is
shut down or the servlet is reloaded, the count begins again. What we really want is
persistence across loads—a counter that doesn’t have to start over.

The init() and destroy() pair can accomplish this. Example 3-4 further
extends the InitCounter example, giving the servlet the ability to save its state in
destroy () and load the state again in init (). To keep things simple, assume this
servlet is not registered and is accessed only as http://server: port/servlet/
InitDestroyCounter. If it were registered under different names, it would have to save
a separate state for each name.

Example 3-4. A fully persistent counter

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class InitDestroyCounter extends HttpServlet ({
int count;
public void init(ServletConfig config) throws ServletException {

// Always call super.init(config) first (servlet mantra #1)
super.init (config) ;

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

60 CHAPTER 3: THE SERVLET LIFE CYCLE

Example 3-4. A fully persistent counter (continued)

// Try to load the initial count from our saved persistent state

try {
FileReader fileReader = new FileReader ("InitDestroyCounter.initial");
BufferedReader bufferedReader = new BufferedReader (fileReader) ;
String initial = bufferedReader.readLine() ;
count = Integer.parselnt (initial);

return;
}
catch (FileNotFoundException ignored) { } // no saved state
catch (IOException ignored) { } // problem during read

catch (NumberFormatException ignored) { } // corrupt saved state

// No luck with the saved state, check for an init parameter
String initial = getInitParameter ("initial");
try {
count = Integer.parselnt (initial);
return;
}

catch (NumberFormatException ignored) { } // null or non-integer value

// Default to an initial count of "0O"
count = 0;

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType ("text/plain") ;
PrintWriter out = res.getWriter();
count++;
out.println("Since the beginning, this servlet has been accessed " +
count + " times.");

public void destroy() {
saveState() ;

public void saveState() {

// Try to save the accumulated count

try {
FileWriter fileWriter = new FileWriter ("InitDestroyCounter.initial");
String initial = Integer.toString(count) ;
fileWriter.write(initial, 0, initial.length());
fileWriter.close();
return;

}

catch (IOException e) { // problem during write
// Log the exception. See Chapter 5.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

INIT AND DESTROY 61

Example 3-4. A fully persistent counter (continued)

}

}

Each time this servlet is about to be unloaded, it saves its state in a file named Init-
DestroyCounter.initial. In the absence of a supplied path, the file is saved in the
server process’ current directory, usually the server_root.” This file contains a
single integer, saved as a string, that represents the latest count.

Each time the servlet is loaded, it tries to read the saved count from the file. If, for
some reason, the read fails (as it does the first time the servlet runs because the
file doesn’t yet exist), the servlet checks if an init parameter specifies the starting
count. If that too fails, it starts fresh with zero. You can never be too careful in
init () methods.

Servlets can save their state in many different ways. Some may use a custom file
format, as was done here. Others may save their state as serialized Java objects or
put it into a database. Some may even perform journaling, a technique common
to databases and tape backups, where the servlet’s full state is saved infrequently
while a journal file stores incremental updates as things change. Which method a
servlet should use depends on the situation. In any case, you should always be
watchful that the state being saved isn’t undergoing any change in the
background.

Right now you’re probably asking yourself “What happens if the server crashes?”
It’s a good question. The answer is that the destroy () method will not be called.t
This doesn’t cause a problem for destroy() methods that only have to free
resources; a rebooted server does that job just as well (if not better). But it does
cause a problem for a servlet that needs to save its state in its destroy () method.
For these servlets, the only guaranteed solution is to save state more often. A
servlet may choose to save its state after handling each request, such as a “chess
server” servlet should do, so that even if the server is restarted, the game can resume
with the latest board position. Other servlets may need to save state only after some
important value has changed—a “shopping cart” servlet needs to save its state only
when a customer adds or removes an item from her cart. Last, for some servlets, it’s
fine to lose a bit of the recent state changes. These servlets can save state after some
set number of requests. For example, in our InitDestroyCounter example, it

* The exact location of the current user directory can be found using System.getProperty ("user.
dir").

1 Unless you’re so unlucky that your server crashes while in the destroy () method. In that case, you
may be left with a partially-written state file—garbage written on top of your previous state. To be per-
fectly safe, a servlet should save its state to a temporary file and then copy that file on top of the official
state file in one command.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

62 CHAPTER 3: THE SERVLET LIFE CYCLE

should be satisfactory to save state every 10 accesses. To implement this, we can
add the following line at the end of doGet ():

if (count % 10 == 0) saveState();

Does this addition make you cringe? It should. Think about synchronization
issues. We’ve opened up the possibility for data loss if saveState () is executed by
two threads at the same time and the possibility for saveState () not to be called
at all if count is incremented by several threads in a row before the check. Note
that this possibility did not exist when saveState() was called only from the
destroy() method: the destroy() method is called just once per servlet
instance. Now that saveState() is called in the doGet () method, however, we
need to reconsider. If by some chance this servlet is accessed so frequently that it
has more than 10 concurrently executing threads, it’s likely that two servlets (10
requests apart) will be in saveState() at the same time. This may result in a
corrupted data file. It’s also possible the two threads will increment count before
either thread notices it was time to call saveState(). The fix is easy: move the
count check into the synchronized block where count is incremented:

int local_count;
synchronized (this) {
local_count = ++count;
if (count % 10 == 0) saveState();
}
out.println("Since loading, this servlet has been accessed " +
local_count + " times.");

The moral of the story is harder: always be vigilant to protect servlet code from
multithreaded access problems.

Even though this series of counter examples demonstrates the servlet life cycle, the
counters themselves aren’t particularly useful because they count only the number
of times they themselves have been accessed. You can find two truly useful
counters—that count accesses to other pages—in the next chapter.

Single-Thread Model

Although it is standard to have one servlet instance per registered servlet name, it
is possible for a servlet to elect instead to have a pool of instances created for each
of its names, all sharing the duty of handling requests. Such servlets indicate this
desire by implementing the javax.servlet.SingleThreadModel interface. This
is an empty, tag interface that defines no methods or variables and serves only to
flag the servlet as wanting the alternate life cycle.

A server that loads a SingleThreadModel servlet must guarantee, according to
the Servlet API documentation, “that no two threads will execute concurrently the

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SINGLE-THREAD MODEL 63

service method of that servlet.” To accomplish this, each thread uses a free servlet
instance from the pool, as shown in Figure 3-4. Thus, any servlet implementing
SingleThreadModel can be considered thread safe and isn’t required to synchro-
nize access to its instance variables.

Web Server

request > Thread Servlet Pool

Servlet
Instance

N
request ————»..Th ol o R

Instance

Threaed Servlet
reql‘lest 0 > Ins'un‘e

Thread .- . Servlet

request ——»— Instance

Figure 3-4. The Single Thread Model

Such a life cycle is pointless for a counter or other servlet application that requires
central state maintenance. The life cycle can be useful, however, in avoiding
synchronization while still performing efficient request handling.

For example, a servlet that connects to a database sometimes needs to perform
several database commands atomically as part of a single transaction. Normally,
this would require the servlet to synchronize around the database commands
(letting it manage just one request at a time) or to manage a pool of database
connections where it can “check out” and “check in” connections (letting it
support multiple concurrent requests). By instead implementing
SingleThreadModel and having one “connection” instance variable per servlet, a
servlet can easily handle concurrent requests by letting its server manage the
servlet instance pool (which doubles as a connection pool). The skeleton code is
shown in Example 3-5.

Example 3-5. Handling database connections using SingleThreadModel

import java.io.*;

import java.sql.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

64 CHAPTER 3: THE SERVLET LIFE CYCLE

Example 3-5. Handling database connections using SingleThreadModel (continued)

public class SingleThreadConnection extends HttpServlet
implements SingleThreadModel {

Connection con = null; // database connection, one per pooled servlet instance

public void init(ServletConfig config) throws ServletException {
super.init (config) ;

// Establish the connection for this instance
con = establishConnection() ;
con.setAutoCommit (false) ;

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType ("text/plain") ;
PrintWriter out = res.getWriter();

// Use the connection uniquely assigned to this instance
Statement stmt = con.createStatement () ;

// Update the database any number of ways

// Commit the transaction
con.commit () ;

public void destroy() {
if (con != null) con.close();

private Connection establishConnection() {
// Not implemented. See Chapter 9.

Background Processing

Servlets can do more than simply persist between accesses. They can also execute
between accesses. Any thread started by a servlet can continue executing even after
the response has been sent. This ability proves most useful for long-running tasks
whose incremental results should be made available to multiple clients. A back-
ground thread started in init() performs continuous work while request-
handling threads display the current status with doGet (). It’s a similar technique
to that used in animation applets, where one thread changes the picture and
another paints the display.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

BACKGROUND PROCESSING 65

Example 3-6 shows a servlet that searches for prime numbers above one quadril-
lion. It starts with such a large number to make the calculation slow enough to
adequately demonstrate caching effects—something we need for the next section.
The algorithm it uses couldn’t be simpler: it selects odd-numbered candidates and
attempts to divide them by every odd integer between 3 and their square root. If
none of the integers evenly divides the candidate, it is declared prime.

Example 3-6. On the hunt for primes

import java.io.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class PrimeSearcher extends HttpServlet implements Runnable {

long lastprime = 0; // last prime found
Date lastprimeModified = new Date(); // when it was found
Thread searcher; // background search thread

public void init(ServletConfig config) throws ServletException {
super.init (config) ; // always!
searcher = new Thread(this) ;
searcher.setPriority (Thread.MIN_PRIORITY); // be a good citizen
searcher.start () ;

public void run() {
// QTTTBBBMMMTTTOOO
long candidate = 1000000000000001L; // one quadrillion and one

// Begin loop searching for primes
while (true) { // search forever
if (isPrime(candidate)) {

lastprime = candidate; // new prime
lastprimeModified = new Date(); // new "prime time"

}

candidate += 2; // evens aren't prime

// Between candidates take a 0.2 second break.
// Another way to be a good citizen with system resources.
try {
searcher.sleep(200) ;
}
catch (InterruptedException ignored) { }

private static boolean isPrime(long candidate) {

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

66 CHAPTER 3: THE SERVLET LIFE CYCLE

Example 3-6. On the hunt for primes (continued)

// Try dividing the number by all odd numbers between 3 and its sqgrt
double sgrt = Math.sgrt (candidate) ;
for (long 1 = 3; i <= sqgrt; 1 += 2) {

if (candidate % i == 0) return false; // found a factor

// Wasn't evenly divisible, so it's prime
return true;

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType ("text/plain") ;

PrintWriter out = res.getWriter();

if (lastprime == 0) {
out.println("Still searching for first prime...");

}

else {
out.println("The last prime discovered was " + lastprime);
out.println(" at " + lastprimeModified) ;

public void destroy () {
searcher.stop() ;

}

The searcher thread begins its search in the init () method. Its latest find is saved
in lastprime, along with the time it was found in in lastprimeModified. Each
time a client accesses the servlet, the doGet () method reports the largest prime
found so far and the time it was found. The searcher runs independently of client
accesses; even if no one accesses the servlet it continues to find primes silently. If
several clients access the servlet at the same time, they all see the same current
status.

Notice that the destroy () method stops the searcher thread.” This is very impor-
tant! If a servlet does not stop its background threads, they continue to run until
the virtual machine exits. Even when a servlet is reloaded (either explicitly or
because its class file changed), its threads won’t be stopped. Instead, it’s likely that

* Stopping threads using the stop () method as shown here is deprecated in JDK 1.2 in favor of a safer
flag-based system, where a thread must periodically examine a “flag” variable to determine when it
should stop, at which point it can clean up and return from its run () method. See the JDK documen-
tation for details. Example source code can be found in an article titled “Scott’s Solutions: Program-
ming with threads in Java 1.2”, written by Scott Oaks for Java Report Online, found at Attp://www.sigs.
com/jro/features/9711/oaks. html.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

LAST MODIFIED TIMES 67

the new servlet will create extra copies of the background threads. And, at least
with the Java Web Server, even explicitly restarting the web server service doesn’t
stop background threads because the Java Web Server virtual machine continues
its execution.

Last Modified Times

By now, we’re sure you’ve learned that servlets handle GET requests with the
doGet () method. And that’s almost true. The full truth is that not every request
really needs to invoke doGet (). For example, a web browser that repeatedly
accesses PrimeSearcher should need to call doGet () only after the searcher
thread has found a new prime. Until that time, any call to doGet () just generates
the same page the user has already seen, a page probably stored in the browser’s
cache. What’s really needed is a way for a servlet to report when its output has
changed. That’s where the getLastModified() method comes in.

Most web servers, when they return a document, include as part of their response
a Last-Modified header. An example Last-Modified header value might be:

Tue, 06-May-98 15:41:02 GMT

This header tells the client the time the page was last changed. That information
alone is only marginally interesting, but it proves useful when a browser reloads a

page.
Most web browsers, when they reload a page, include in their request an If-
Modified-Since header. Its structure is identical to the Last-Modified header:

Tue, 06-May-98 15:41:02 GMT

This header tells the server the Last-Modified time of the page when it was last
downloaded by the browser. The server can read this header and determine if the
file has changed since the given time. If the file has changed, the server must send
the newer content. If the file hasn’t changed, the server can reply with a simple,
short response that tells the browser the page has not changed and it is sufficient
to redisplay the cached version of the document. For those familiar with the
details of HTTP, this response is the 304 “Not Modified” status code.

This technique works great for static pages: the server can use the file system to
find out when any file was last modified. For dynamically generated content,
though, such as that returned by servlets, the server needs some extra help. By
itself, the best the server can do is play it safe and assume the content changes with
every access, effectively eliminating the usefulness of the Last-Modified and If-
Modified-Since headers.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

68 CHAPTER 3: THE SERVLET LIFE CYCLE

The extra help a servlet can provide is implementing the getLastModified ()
method. A servlet should implement this method to return the time it last
changed its output. Servers call this method at two times. The first time the server
calls it is when it returns a response, so that it can set the response’s Last-
Modified header. The second time occurs in handling GET requests that include
the If-Modified-Since header (usually reloads), so it can intelligently deter-
mine how to respond. If the time returned by getLastModified () is equal to or
earlier than the time sent in the If-Modified-Since header, the server returns
the “Not Modified” status code. Otherwise, the server calls doGet () and returns
the servlet’s output.”

Some servlets may find it difficult to determine their last modified time. For these
situations, it’s often best to use the “play it safe” default behavior. Many servlets,
however, should have little or no problem. Consider a “bulletin board” servlet
where people post carpool openings or the need for racquetball partners. It can
record and return when the bulletin board’s contents were last changed. Even if
the same servlet manages several bulletin boards, it can return a different modi-
fied time depending on the board given in the parameters of the request. Here’s a
getLastModified () method for our PrimeSearcher example that returns when
the last prime was found.

public long getLastModified (HttpServletRequest req) {
return lastprimeModified.getTime() / 1000 * 1000;
}

Notice that this method returns a long value that represents the time as a number
of milliseconds since midnight, January 1, 1970, GMT. This is the same representa-
tion used internally by Java to store time values. Thus, the servlet uses the
getTime () method to retrieve lastprimeModified as a long.

Before returning this time value, the servlet rounds it down to the nearest second
by dividing by 1000 and then multiplying by 1000. All times returned by
getLastModified() should be rounded down like this. The reason is that the
Last-Modified and If-Modified-Since headers are given to the nearest
second. If getLastModified() returns the same time but with a higher resolu-
tion, it may erroneously appear to be a few milliseconds later than the time given
by If-Modified-Since. For example, let’s assume PrimeSearcher found a
prime exactly 869127442359 milliseconds since the beginning of the Disco
Decade. This fact is told to the browser, but only to the nearest second:

Thu, 17-Jul-97 09:17:22 GMT

* A servlet can directly set its Last-Modified header inside doGet (), using techniques discussed in
Chapter 5, Sending HTML Information. However, by the time the header is set inside doGet (), it’s too
late to decide whether or not to call doGet ().

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

LAST MODIFIED TIMES 69

Now let’s assume that the user reloads the page and the browser tells the server,
via the If-Modified-Since header, the time it believes its cached page was last
modified:

Thu, 17-Jul-97 09:17:22 GMT

Some servers have been known to receive this time, convert it to exactly
869127442000 milliseconds, find that this time is 359 milliseconds earlier than the
time returned by getLastModified(), and falsely assume that the servlet’s
content has changed. This is why, to play it safe, getLastModified() should
always round down to the nearest thousand milliseconds.

The HttpServletRequest object is passed to getLastModified() in case the
servlet needs to base its results on information specific to the particular request.
The generic bulletin board servlet can make use of this to determine which board
was being requested, for example.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

In this chapter:
¢ Initialization
Parameters
* The Server

® The Client
* The Request

Retrieving Information

To build a successful web application, you often need to know a lot about the envi-
ronment in which it is running. You may need to find out about the server that is
executing your servlets or the specifics of the client that is sending requests. And
no matter what kind of environment the application is running in, you most
certainly need information about the requests that the application is handling.

Servlets have a number of methods available to gain access to this information. For
the most part, each method returns one specific result. If you compare this to the
way environment variables are used to pass a CGI program its information, the
servlet approach has several advantages:

e Stronger type checking. In other words, more help from the compiler in
catching errors. A CGI program uses one function to retrieve its environment
variables. Many errors cannot be found until they cause runtime problems.
Let’s look at how both a CGI program and a servlet find the port on which its
server is running.

A CGI script written in Perl calls:

$port = $ENV{'SERVER_PORT'};

where $port is an untyped variable. A CGI program written in C calls:

char *port = getenv ("SERVER_PORT") ;

where port is a pointer to a character string. The chance for accidental errors
is high. The environment variable name could be misspelled (it happens often
enough) or the data type might not match what the environment variable
returns.

A servlet, on the other hand, calls:

int port = req.getServerPort ()

70
Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

RETRIEVING INFORMATION 71

This eliminates a lot of accidental errors because the compiler can guarantee
there are no misspellings and each return type is as it should be.

Delayed calculation. When a server launches a CGI program, the value for
each and every environment variable must be precalculated and passed,
whether the CGI program uses it or not. A server launching a servlet has the
option to improve performance by delaying these calculations and perform-
ing them on demand as needed.

More interaction with the server. Once a CGI program begins execution, it is
untethered from its server. The only communication path available to the pro-
gram 1is its standard output. A servlet, however, can work with the server. As
discussed in the last chapter, a servlet operates either within the server (when
possible) or as a connected process outside the server (when necessary). Using
this connectivity, a servlet can make ad hoc requests for calculated informa-
tion that only the server can provide. For example, a servlet can have its server
do arbitrary path translations, taking into consideration the server’s aliases

and virtual paths.

If you’re coming to servlets from CGI, Table 4-1 is a “cheat sheet” you can use for
your migration. It lists each CGI environment variable and the corresponding

HTTP servlet method.

Table 4-1. CGI Environment Variables and the Corresponding Servlet Methods

CGI Environment Variable

HTTP Servlet Method

SERVER_NAME
SERVER_SOFTWARE.
SERVER_PROTOCOL
SERVER_PORT
REQUEST METHOD
PATH_INFO
PATH_TRANSLATED
SCRIPT_NAME
DOCUMENT_ROOT
QUERY_STRING
REMOTE_HOST
REMOTE_ADDR
AUTH_TYPE
REMOTE_USER
CONTENT_TYPE.
CONTENT_LENGTH
HTTP_ACCEPT

req.getServerName ()
getServletContext () .getServerInfo ()
req.getProtocol ()
req.getServerPort ()
req.getMethod ()
req.getPathInfo ()
req.getPathTranslated ()
reqg.getServletPath()
reqg.getRealPath("/")
reqg.getQueryString ()
req.getRemoteHost ()
req.getRemoteAddr ()
req.getAuthType ()
req.getRemoteUser ()
reqg.getContentType ()
req.getContentLength ()
req.getHeader ("Accept")

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

72 CHAPTER 4: RETRIEVING INFORMATION

Table 4-1. CGI Environment Variables and the Corresponding Servlet Methods (continued)

CGI Environment Variable HTTP Servlet Method
HTTP_USER_AGENT req.getHeader ("User-Agent")
HTTP_REFERER req.getHeader ("Referer")

In the rest of this chapter, we’ll see how and when to use these methods—and
several other methods that have no CGI counterparts. Along the way, we’ll put the
methods to use in some real servlets.

Initialization Parameters

Each registered servlet name can have specific initialization (init) parameters asso-
ciated with it. Init parameters are available to the servlet at any time; they are often
used in init() to set initial or default values for a servlet or to customize the
servlet’s behavior in some way. Init parameters are more fully explained in
Chapter 3, The Servlet Life Cycle.

Getting an Init Parameter

A servlet uses the getInitParameter() method to get access to its init
parameters:

public String ServletConfig.getInitParameter (String name)

This method returns the value of the named init parameter or null if it does not
exist. The return value is always a single String. It is up to the servlet to interpret
the value.

The GenericServlet class implements the ServletConfig interface and thus
provides direct access to the getInitParameter() method.” The method is
usually called like this:

public void init(ServletConfig config) throws ServletException {
super.init (config) ;
String greeting = getInitParameter ("greeting") ;

}

A servlet that needs to establish a connection to a database can use its init parame-
ters to define the details of the connection. We can assume a custom
establishConnection () method to abstract away the details of JDBC, as shown
in Example 4-1.

* The servlet must call super.init (config) inits init () method to get this functionality.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

INITIALIZATION PARAMETERS 73

Example 4-1. Using init parameters to establish a database connection

java.sql.Connection con = null;

public void init(ServletConfig config) throws ServletException {
super.init (config) ;

String host = getInitParameter ("host");

int port = Integer.parselnt (getInitParameter ("port"));
String db = getInitParameter ("db");

String user = getInitParameter ("user");

String password = getInitParameter ("password") ;
String proxy = getInitParameter ("proxy");

con = establishConnection (host, port, db, user, password, proxy);

Getting Init Parameter Names
A servlet can examine all its init parameters using getInitParameterNames ():
public Enumeration ServletConfig.getInitParameterNames ()

This method returns the names of all the servlet’s init parameters as an
Enumeration of String objects or an empty Enumeration if no parameters exist.
It’s most often used for debugging.

The GenericServlet class also makes this method directly available to servlets.
Example 4-2 shows a servlet that prints the name and value for all of its init
parameters.

Example 4-2. Getting init parameter names

import java.io.*;
import java.util.*;
import javax.servlet.*;

public class InitSnoop extends GenericServlet {
// No init () method needed

public void service(ServletRequest req, ServletResponse res)
throws ServletException, IOException {
res.setContentType ("text/plain") ;
PrintWriter out = res.getWriter();

out.println("Init Parameters:");
Enumeration enum = getInitParameterNames () ;
while (enum.hasMoreElements()) {

String name = (String) enum.nextElement();

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

74 CHAPTER 4: RETRIEVING INFORMATION

Example 4-2. Getting init parameter names (continued)

out.println(name + ": " + getInitParameter (name));

}

Notice that this servlet directly subclasses GenericServlet, showing that init
parameters are available to servlets that aren’t HTTP servlets. A generic servlet can
be used in a web server even though it lacks any support for HTTP-specific
functionality.

Unfortunately, there’s no server-independent way for a servlet to ask for its regis-
tered name or its class file location. This information may be added in a future
version of the Servlet API. Until then, although it’s not pretty, this information can
be passed using init parameters where necessary. Also, some servers—including
the Java Web Server—provide a back door whereby a servlet can get its registered
name. If a servlet defines a method with the following signature, the server calls it
and passes it the servlet’s registered name at initialization:

public void setServletName (String name) ;

The servlet can save the passed-in name and use it later. You’ll notice this back
door was built without changing the Servlet API, a necessary requirement because,
by the time it was added, the Servlet API 2.0 had already been frozen.

The Server

A servlet can find out much about the server in which it is executing. It can learn
the hostname, listening port, and server software, among other things. A servlet
can display this information to a client, use it to customize its behavior based on a
particular server package, or even use it to explicitly restrict the machines on
which the servlet will run.

Getting Information About the Server

There are four methods that a servlet can use to learn about its server: two that are
called using the ServletRequest object passed to the servlet and two that are
called from the ServletContext object in which the servlet is executing. A servlet
can get the name of the server and the port number for a particular request with
getServerName () and getServerPort (), respectively:

public String ServletRequest.getServerName ()
public int ServletRequest.getServerPort ()

These methods are attributes of ServletRequest because the values can change
for different requests if the server has more than one name (a technique called

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE SERVER 75

virtual hosting). The returned name might be something like "www.servlets.
com" while the returned port might be something like "8080".

The getServerInfo() and getAttribute() methods of ServletContext
provide information about the server software and its attributes:

public String ServletContext.getServerInfo ()
public Object ServletContext.getAttribute(String name)

getServerInfo () returns the name and version of the server software, separated
by a slash. The string returned might be something like "JavaWebServer/1.1.
1". getAttribute () returns the value of the named server attribute as an Object
or null if the attribute does not exist. The attributes are server-dependent. You
can think of this method as a back door through which a servlet can get extra
information about its server. Attribute names should follow the same convention
as package names. The package names java.* and javax.* are reserved for use
by the Java Software division of Sun Microsystems (formerly known as JavaSoft),
and com.sun. * is reserved for use by Sun Microsystems. See your server’s docu-
mentation for a list of its attributes. Because these methods are attributes of
ServletContext in which the servlet is executing, you have to call them through
that object:

String serverInfo = getServletContext ().getServerInfol();

The most straightforward use of information about the server is an “About This
Server” servlet, as shown in Example 4-3.

Example 4-3. Snooping the server

import java.io.*;
import java.util.*;
import javax.servlet.*;

public class ServerSnoop extends GenericServlet {

public void service(ServletRequest req, ServletResponse res)
throws ServletException, IOException {
res.setContentType ("text/plain") ;
PrintWriter out = res.getWriter();

out.println("reqg.getServerName(): " + req.getServerName()) ;
out.println("reg.getServerPort(): " + reqg.getServerPort());
out.println("getServletContext () .getServerInfo(): " +
getServletContext () .getServerInfo()) ;
out.println("getServerInfo() name: " +

getServerInfoName (getServletContext () .getServerInfo()));
out.println("getServerInfo() version: " +

getServerInfoVersion (getServletContext () .getServerInfo()));
out.println("getServletContext () .getAttribute(\"attribute\"): " +

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

76 CHAPTER 4: RETRIEVING INFORMATION

Example 4-3. Snooping the server (continued)

getServletContext () .getAttribute ("attribute")) ;

private String getServerInfoName (String serverInfo) {
int slash = serverInfo.indexOf('/"');
if (slash == -1) return serverInfo;
else return serverInfo.substring(0, slash);

private String getServerInfoVersion(String serverInfo) {
int slash = serverInfo.indexOf('/"');
if (slash == -1) return null;
else return serverInfo.substring(slash + 1);

}

This servlet also directly subclasses GenericServlet, demonstrating that all the
information about a server is available to servlets of any type. The servlet outputs
simple raw text. When accessed, this servlet prints something like:

req.getServerName () : localhost

req.getServerPort () : 8080
getServletContext () .getServerInfo(): JavaWebServer/1.1.1
getServerInfo() name: JavaWebServer

getServerInfo() version: 1.1.1
getServletContext () .getAttribute ("attribute"): null

Unfortunately, there is no server-independent way to determine the server’s root
directory, referred to in this book as server. root. However, some servers—
including the Java Web Server—save the server’s root directory name in the
server.root system property, where it can be retrieved using System.
getProperty ("server.root").

Locking a Servlet to a Server

This server information can be put to more productive uses. Let’s assume you’ve
written a servlet and you don’t want it running just anywhere. Perhaps you want to
sell it and, to limit the chance of unauthorized copying, you want to lock the
servlet to your customer’s machine with a software license. Or, alternatively, you’ve
written a license generator as a servlet and want to make sure it works only behind
your firewall. This can be done relatively easily because a servlet has instant access
to the information about its server.

Example 4-4 shows a servlet that locks itself to a particular server IP address and
port number. It requires an init parameter key that is appropriate for its server IP
address and port before it unlocks itself and handles a request. If it does not

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE SERVER 77

receive the appropriate key, it refuses to continue. The algorithm used to map the
key to the IP address and port (and vice-versa) must be secure.

Example 4-4. A servlet locked to a server

import java.io.*;
import java.net.*;
import java.util.*;
import javax.servlet.*;

public class KeyedServerlLock extends GenericServlet {

// This servlet has no class or instance variables
// associated with the locking, so as to simplify
// synchronization issues.

public void service(ServletRequest req, ServletResponse res)
throws ServletException, IOException {
res.setContentType ("text/plain") ;
PrintWriter out = res.getWriter();

// The piracy check shouldn't be done in init
// because name/port are part of request.
String key = getInitParameter ("key");

String host = req.getServerName () ;

int port = req.getServerPort();

// Check if the init parameter "key" unlocks this server.
if (! keyFitsServer (key, host, port)) {
// Explain, condemn, threaten, etc.
out.println("Pirated!");
}
else {
// Give 'em the goods
out.println("valid");
// etc...

// This method contains the algorithm used to match a key with

// a server host and port. This example implementation is extremely
// weak and should not be used by commercial sites.

//

private boolean keyFitsServer (String key, String host, int port) {

if (key == null) return false;

long numericKey = 0;
try {

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

78 CHAPTER 4: RETRIEVING INFORMATION

Example 4-4. A servlet locked to a server (continued)

numericKey = Long.parseLong (key) ;
}
catch (NumberFormatException e) {
return false;

// The key must be a 64-bit number equal to the logical not (~)
// of the 32-bit IP address concatenated with the 32-bit port number.

byte hostIP[];
try {
hostIP = InetAddress.getByName (host) .getAddress() ;
}
catch (UnknownHostException e) {
return false;

// Get the 32-bit IP address

long servercode = 0;

for (int i = 0; 1 < 4; i++) {
servercode <<= 8;
servercode |= (hostIP[i] & 255);

// Concatentate the 32-bit port number
servercode <<= 32;
servercode |= port;

// Logical not
long accesscode = ~numericKey;

// The moment of truth: Does the key match?
return (servercode == accesscode) ;

}

This servlet refuses to perform unless given the correct key. To really make it
secure, however, the simple keyFitsServer () logic should be replaced with a
strong algorithm and the whole servlet should be run through an obfuscator to
prevent decompiling. Example 4-8 later in this chapter provides the code used to
generate keys. If you try this servlet yourself, it’s best if you access the server with
its actual name, rather than localhost, so the servlet can determine the web server’s
true name and IP address.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE CLIENT 79

The Client

For each request, a servlet has the ability to find out about the client machine and,
for pages requiring authentication, about the actual user. This information can be
used for logging access data, associating information with individual users, or
restricting access to certain clients.

Getting Information About the Client Machine

A servlet can use getRemoteAddr () and getRemoteHost () to retrieve the IP
address and hostname of the client machine, respectively:

public String ServletRequest.getRemoteAddr ()
public String ServletRequest.getRemoteHost ()

Both values are returned as String objects. The information comes from the
socket that connects the server to the client, so the remote address and hostname
may be that of a proxy server. An example remote address might be "192.26.80.
118" while an example remote host might be "dist.engr. sgi.com".

The IP address or remote hostname can be converted to a java.net.
InetAddress object using InetAddress.getByName ():

InetAddress remoteInetAddress = InetAddress.getByName (req.getRemoteAddr()) ;

Restricting Access to the United States and Canada

Due to the United States government’s policy restricting the export of strong
encryption outside the United States and Canada, some web sites must be careful
about who they let download certain software. Servlets, with their ability to find
out about the client machine, are well suited to enforce this restriction. These serv-
lets can check the client machine and provide links for download only if the client
appears to be coming from inside the United States or Canada. Example 4-5 gives
an example.

Example 4-5. Can they be trusted?

import java.io.*;

import java.net.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class ExportRestriction extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

80 CHAPTER 4: RETRIEVING INFORMATION

Example 4-5. Can they be trusted? (continued)

throws ServletException, IOException {
res.setContentType ("text/html") ;
PrintWriter out = res.getWriter();

// ...Some introductory HIML...

// Get the client's hostname
String remoteHost = req.getRemoteHost () ;

// See if the client is allowed
if (! isHostAllowed (remoteHost)) {
out.println("Access <BLINK>denied</BLINK>"); // filter out the blink!
}
else {
out.println("Access granted");
// Display download links, etc...

// We assume hosts ending with .com, .edu, .net, .org,
// .gov, .mil, .us, and .ca are legal even though this is an
// over-simplification now that .com, .net, and .org have
// become global top-level domains. We also assume
// clients without a domain name are local and that
// local is allowed. (After all, if local isn't allowed
// you would have to be outside the United States and Canada -- so
// why would you be using this servlet?)
private boolean isHostAllowed(String host) {
return (host.endsWith(".com") ||
host.endswith(".edu") ||
host.endsWith(".net") ||
host.endsWith(".org") ||
host.endsWith(".gov") ||
host.endswWith(".mil") ||
host.endswWith(".us") ||
host.endsWith(".ca") ||
(host.indexOf('.') == -1)); // no domain, assume OK

}

This servlet gets the client hostname with a call to req.getRemoteHost () and,
based on its suffix, decides if the client came from inside or outside the United
States and Canada. Of course, be sure to get high-priced legal counsel before
making any cryptographic code available for download.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE CLIENT 81

Getting Information About the User

What do you do when you need to restrict access to some of your web pages but
want to have a bit more control over the restriction than this “continent by conti-
nent” approach? Say, for example, you publish an online magazine and want only
paid subscribers to read the articles. Well (prepare yourself), you don’t need serv-
lets to do this.

Nearly every HTTP server has a built-in capability to restrict access to some or all
of its pages to a given set of registered users. How you set up restricted access
depends on the server, but here’s how it works mechanically. The first time a
browser attempts to access one of these pages, the HTTP server replies that it
needs special user authentication. When the browser receives this response, it
usually pops open a window asking the user for a name and password appropriate
for the page, as shown in Figure 4-1.

| Enter username for SurfZone at www.surf.sgi.com:‘

User ID: |

Password: |

[ox | [[aeor] [concel

Figure 4-1. Please log in

Once the user enters his information, the browser again attempts to access the
page, this time attaching the user’s name and password along with the request. If
the server accepts the name/password pair, it happily handles the request. If, on
the other hand, the server doesn’t accept the name/password pair, the browser is
again denied and the user swears under his breath about forgetting yet another
password.

How does this involves servlets? When access to a servlet has been restricted by the
server, the servlet can get the name of the user that was accepted by the server,
using the getRemoteUser () method:

public String HttpServletRequest.getRemoteUser ()

Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

82 CHAPTER 4: RETRIEVING INFORMATION

Note that this information is retrieved from the servlet’s HttpServletRequest
object, the HTTP-specific subclass of ServletRequest. This method returns the
name of the user making the request as a String or null if access to the servlet
was not restricted. There is no comparable method to get the remote user’s pass-
word (although it can be manually determined, as shown in Example 8-2). An
example remote user might be "jhunter".

A servlet can also use the getAuthType () method to find out what type of autho-
rization was used:

public String HttpServletRequest.getAuthType ()

This method returns the type of authorization used or null if access to the servlet
was not restricted. The most common authorization types are "BASIC" and
"DIGEST".

By the time the servlet calls getRemoteUser (), the server has already determined
that the user is authorized to invoke the servlet, but that doesn’t mean the remote
user’s name is worthless. The servlet could perform a second authorization check,
more restrictive and dynamic than the server’s. For example, it could return sensi-
tive information about someone only if that person made the request, or it could
enforce a rule that each user can make only 10 accesses per day.”

Then again, the client’s name can simply tell the servlet who is accessing it. After
all, the remote host is not necessarily unique to one user. Unix servers often host
hundreds of users, and gateway proxies can act on behalf of thousands. But bear
in mind that access to the client’s name comes with a price. Every user must be
registered with your server and, before accessing your site, must enter his name
and password. Generally speaking, authentication should not be used just so a
servlet can know to whom it is talking. Chapter 7, Session Tracking, describes some
better, lower-maintenance techniques for knowing about users. However, if a
servlet is already protected and has the name easily available, the servlet might as
well use it.

With the remote user’s name, a servlet can save information about each client.
Over the long term, it can remember each individual’s preferences. For the short
term, it can remember the series of pages viewed by the client and use them to
add a sense of state to a stateless HT'TP protocol. The session tracking tricks from
Chapter 7 may be unnecessary if the servlet already knows the name of the client
user.

* Want to know how to say “Access Denied” for the eleventh access? It’s in the next chapter.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE CLIENT 83

A Personalized Welcome

A simple servlet that uses getRemoteUser () can greet its clients by name and
remember when each last logged in, as shown in Example 4-6.
Example 4-6. Hey, I remember you!

import java.io.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class PersonalizedWelcome extends HttpServlet {
Hashtable accesses = new Hashtable() ;
public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType ("text/html") ;
PrintWriter out = res.getWriter();

// ...Some introductory HTML...

String remoteUser = req.getRemoteUser();

if (remoteUser == null) {
out.println("Welcome!") ;
}
else {
out.println("Welcome, " + remoteUser + "!");
Date lastAccess = (Date) accesses.get (remoteUser) ;
if (lastAccess == null) {
out.println("This is your first visit!");
}
else {

out.println("Your last visit was " + accesses.get (remoteUser)) ;

if (remoteUser.equals ("PROFESSOR FALKEN")) {
out.println("Shall we play a game?");

accesses.put (remoteUser, new Date());

// ...Continue handling the request...

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

84 CHAPTER 4: RETRIEVING INFORMATION

This servlet uses a Hashtable to save the last access time for each remote user.
The first thing it does for each request is greet the person by name and tell him
the time of his last visit. Then it records the time of this visit, for use next time.
After that, it continues handling the request.

The Request

We’ve seen how the servlet finds out about the server and about the client. Now
it’s time to move on to the really important stuff: how a servlet finds out what the
client wants.

Request Parameters

Each access to a servlet can have any number of request parameters associated
with it. These parameters are typically name/value pairs that tell the servlet any
extra information it needs to handle the request. Please don’t confuse these
request parameters with init parameters, which are associated with the servlet
itself.

An HTTP servlet gets its request parameters as part of its query string (for GET
requests) or as encoded post data (for POST requests). A servlet used as a server-
side include has its parameters supplied by <PARAM> tags. Other types of servlets
can receive their parameters in other ways.

Fortunately, even though a servlet can receive parameters in a number of different
ways, every servlet retrieves its parameters the same way, using getParameter ()
and getParameterValues ():

public String ServletRequest.getParameter (String name)
public String[] ServletRequest.getParameterValues (String name)

getParameter () returns the value of the named parameter as a String or null
if the parameter was not specified.” The value is guaranteed to be in its normal,
decoded form. If the parameter has multiple values, the value returned is server-
dependent. If there’s any chance a parameter could have more than one value,
you should use the getParameterValues () method instead. This method returns
all the values of the named parameter as an array of String objects or null if the
parameter was not specified. A single value is returned in an array of length 1.

One word of warning: if the parameter information came in as encoded POST data,
it may not be available if the POST data has already been read manually using the

* The getParameter() method was deprecated in the Java Web Server 1.1 in favor of
getParameterValues (). However, after quite a lot of public protest, Sun took getParameter () off
the deprecation list in the final release of Servlet API 2.0. It was the first Java method to be undepre-
cated!

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE REQUEST 85

getReader () or getInputStream() method of ServletRequest (because
POST data can be read only once).

The possible uses for request parameters are unlimited. They are a general-
purpose way to tell a servlet what to do, how to do it, or both. For a simple
example, let’s look at how a dictionary servlet might use getParameter () to find
out the word it needs to look up.

An HTML file could contain this form asking the user for a word to look up:

<FORM METHOD=GET ACTION="/servlet/Dictionary">
Word to look up: <INPUT TYPE=TEXT NAME="word"><P>
Another word? <INPUT TYPE=TEXT N ="word"><P>
<INPUT TYPE=SUBMIT><P>

</FORM>

Or the HTML file could contain this server-side include:

<SERVLET CODE=Dictionary>

<PARAM NAME=word VALUE=obfuscate>
<PARAM NAME=word VALUE=onomatopoeia>
</SERVLET>

No matter what the HTML looks like or whether the servlet handles GET requests,
POST requests, or server-side include requests or is part of a filter chain, you can
use code like the following to retrieve the servlet’s parameters:

String word = req.getParameter ("word") ;
String definition = getDefinition (word) ;
out.println(word + ": " + definition);

While this code works fine, it can handle only one word per request. To handle
multiple values for word, the servlet can use the getParameterValues () method
instead:

String[] words = req.getParameterValues ("word") ;
if (words != null) {
for (int i = 0; i < words.length; i++) {
String definition = getDefinition (words[i]);
out.println(words[i] + ": " + definition);
out.println("<HR>") ;

}

In addition to getting parameter values, a servlet can access parameter names
using getParameterNames ():

public Enumeration ServletRequest.getParameterNames ()

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

86 CHAPTER 4: RETRIEVING INFORMATION

This method returns all the parameter names as an Enumeration of String
object or an empty Enumeration if the servlet has no parameters. The method is
most often used for debugging.

Finally, a servlet can retrieve the raw query string of the request with
getQueryString():

public String ServletRequest.getQueryString()

This method returns the raw query string (encoded GET parameter information)
of the request or null if there was no query string. This low-level information is
rarely useful for handling form data. It’s best for handling a single unnamed value,
asin "/servlet/Sqgrt?576", where the returned query string is "576".

Example 4-7 shows the use of these methods with a servlet that prints its query
string, then prints the name and value for all its parameters.

Example 4-7. Snooping parameters

import java.io.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class ParameterSnoop extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType ("text/plain") ;
PrintWriter out = res.getWriter();

out.println("Query String:");
out.println(req.getQueryString());
out.println();

out.println("Request Parameters:");
Enumeration enum = req.getParameterNames () ;
while (enum.hasMoreElements()) {

String name = (String) enum.nextElement () ;

String values|[] = req.getParameterValues (name) ;

if (values != null) {

for (int 1 = 0; i < values.length; i++) {
out.println(name + " (" + i + "): " + values[i]);

This servlet’s output is shown in Figure 4-2.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE REQUEST

87

File Edit “iew Go Communicator Help

-

4 » 4 N} 2 £ 5 & @l

Back Fonward Reload Home Search Guide Frint Securty Stop

? w! " Bookmarks \g&_ Goto: Ihttp:a’a’localhost:BDBDa’servIeta’ParameterSnonp?action=lnokup&word= j

Query String:
action=lookupiword=cbhfuscatesword=onomatopoeia

Regquest Parstieters:
word (0): ohfuscate

word (1) : onomatopoeia
action (0): lookup
=P |Document: Done

Figure 4-2. The snooped parameters

Generating a License Key

Now we’re ready to write a servlet that generates a KeyedServerLock license key
for any given host and port number. A key from this servlet can be used to unlock
the KeyedServerLock servlet. So, how will this servlet know the host and port
number of the servlet it needs to unlock? Why, with request parameters, of course.

Example 4-8 shows the code.

Example 4-8. Unlocking KeyedServerLock

import java.io.*;

import java.net.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class KeyedServerUnlock extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
PrintWriter out = res.getWriter();

// Get the host and port
String host = req.getParameter ("host");
String port = req.getParameter ("port");

// Convert the port to an integer
int numericPort;
try {
numericPort = Integer.parselnt (port) ;

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

88 CHAPTER 4: RETRIEVING INFORMATION

Example 4-8. Unlocking KeyedServerLock (continued)

}
catch (NumberFormatException e) {
numericPort = 80; // default

// Generate and print the key
// Any KeyGenerationException is caught and displayed
try {
long key = generateKey (host, numericPort);
out.println(host + ":" + numericPort + " has the key " + key);
}
catch (KeyGenerationException e) {
out.println("Could not generate key: " + e.getMessage()):;

// This method contains the algorithm used to match a key with

// a server host and port. This example implementation is extremely

// weak and should not be used by commercial sites.

//

// Throws a KeyGenerationException because anything more specific

// would be tied to the chosen algorithm.

//

private long generateKey (String host, int port) throws KeyGenerationException {

// The key must be a 64-bit number equal to the logical not (~)
// of the 32-bit IP address concatenated by the 32-bit port number.

byte hostIP[];
try {
hostIP = InetAddress.getByName (host) .getAddress() ;
}
catch (UnknownHostException e) {
throw new KeyGenerationException(e.getMessage());

// Get the 32-bit IP address

long servercode = 0;

for (int i = 0; 1 < 4; i++) {
servercode <<= 8;
servercode |= (hostIP[i] & 255);

// Concatentate the 32-bit port number
servercode <<= 32;
servercode |= port;

// The key is the logical not

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE REQUEST 89

Example 4-8. Unlocking KeyedServerLock (continued)

return ~servercode;

class KeyGenerationException extends Exception {

public KeyGenerationException() {
super () ;

public KeyGenerationException (String msg) ({
super (msg) ;

}

This servlet can either generate a full page (for handling GET requests) or act as a
server-side include.

Path Information

In addition to parameters, an HTTP request can include something called “extra
path information” or a “virtual path.” In general, this extra path information is
used to indicate a file on the server that the servlet should use for something. This
path information is encoded in the URL of an HTTP request. An example URL
looks like this:

http://server:port/servlet/ViewFile/index.html

This invokes the ViewFile servlet, passing "/index.html" as extra path informa-
tion. A servlet can access this path information, and it can also translate the "/
index.html" string into the real path of the index.html file. What is the real path
of "/index.html"? It’s the full file system path to the file—what the server would
return if the client asked for "/index.html" directly. This probably turns out to
be document_root/index.html, but, of course, the server could have special
aliasing that changes this.

Besides being specified explicitly in a URL, this extra path information can also be
encoded in the ACTION parameter of an HTML form:

<FORM METHOD=GET ACTION="/servlet/Dictionary/dict/definitions.txt">
Word to look up: <INPUT TYPE=TEXT NAME="word"><P>

<INPUT TYPE=SUBMIT><P>

</FORM>

This form invokes the Dictionary servlet to handle its submissions and passes the
Dictionary the extra path information "/dict/definitions.txt". The
Dictionary servlet can then know to look up word definitions using the definitions.ixt

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

90 CHAPTER 4: RETRIEVING INFORMATION

file, the same file the client would see if it requested "/dict/definitions.txt",
probably server. root/public_html/dict/definitions.txt.

Why Extra Path Information?

Why does HTTP have special support for extra path information? Isn’t it
enough to pass the servlet a path parameter? The answer is yes. Servlets don’t
need the special support, but CGI programs do.

A CGI program cannot interact with its server during execution, so it has no
way to receive a path parameter, let alone ask the server to map it to a real file
system location. The server has to somehow translate the path before invoking
the CGI program. This is why there needs to be support for special “extra path
information.” Servers know to pretranslate this extra path and send the trans-
lation to the CGI program as an environment variable. It’s a fairly elegant
workaround to a shortcoming in CGI.

Of course, just because servlets don’t need the special handling of “extra path
information,” it doesn’t mean they shouldn’t use it. It provides a simple, con-
venient way to attach a path along with a request.

Getting path information

A servlet can use the getPathInfo () method to get extra path information:
public String HttpServletRequest.getPathInfo()

This method returns the extra path information associated with the request or
null if none was given. An example path is "/dict/definitions.txt". The
path information by itself, however, is only marginally useful. A servlet usually
needs to know the actual file system location of the file given in the path info,
which is where getPathTranslated () comes in:

public String HttpServletRequest.getPathTranslated()

This method returns the extra path information translated to a real file system
path or null if there is no extra path information. The returned path does not
necessarily point to an existing file or directory. An example translated path is
"C:\JavaWebServerl.1l.1l\public_html\dict\definitions.txt".

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE REQUEST 91

Example 4-9 shows a servlet that uses these two methods to print the extra path
information it receives and the resulting translation to a real path.

Example 4-9. Showing where the path leads
import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class FileLocation extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType ("text/plain") ;
PrintWriter out = res.getWriter();

if (reqg.getPathInfo() != null) {
out.println("The file \"" + reqg.getPathInfo() + "\"");
out.println("Is stored at \"" + reqg.getPathTranslated() + "\"");

Some example output of this servlet might be:
The file "/index.html"

Is stored at "/usr/JavaWebServerl.l.l/public_html/index.html"

Ad hoc path translations

Sometimes a servlet needs to translate a path that wasn’t passed in as extra path
information. You can use the getRealPath () method for this task:

public String ServletRequest.getRealPath(String path)

This method returns the real path of any given “virtual path” or null if the trans-
lation cannot be performed. If the given path is "/", the method returns the
document root (the place where documents are stored) for the server. If the given
path is getPathInfo(), the method returns the same real path as would be
returned by getPathTranslated (). This method can be used by generic servlets
as well as HTTP servlets. There is no CGI counterpart.

Getting MIME types

Once a servlet has the path to a file, it often needs to discover the type of the file.
Use getMimeType () to do this:

public String ServletContext.getMimeType (String file)

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

92 CHAPTER 4: RETRIEVING INFORMATION

This method returns the MIME type of the given file or null if it isn’t known.
Some implementations return "text/plain" if the given file doesn’t exist.
Common MIME types are "text/html", "text/plain", "image/gif", and
"image/jpeg".

The following code fragment finds the MIME type of the extra path information:

String type = getServletContext () .getMimeType (req.getPathTranslated())

Serving Files

The Java Web Server itself uses servlets to handle every request. Besides being a
showcase for the ability of servlets, this gives the server a modular design that
allows the wholesale replacement of certain aspects of its functionality. For
example, all files are served by the com.sun.server.http.FileServlet servlet,
registered under the name file and charged with the responsibility to handle the
"/" alias (meaning it’s the default handler for requests). But there’s nothing to
say that Sun’s FileServlet cannot be replaced. In fact, it can be, either by regis-
tering another servlet under the name file or by changing the "/" alias to use
another servlet. Furthermore, it’s not all that hard to write a replacement for
file, using the methods we’ve just seen.

Example 4-10 shows a ViewFile servlet that uses the getPathTranslated() and
getMimeType () methods to return whatever file is given by the extra path
information.

Example 4-10. Dynamically returning static files

import java.io.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

import com.oreilly.servlet.ServletUtils;
public class ViewFile extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
// Use a ServletOutputStream because we may pass binary information
ServletOutputStream out = res.getOutputStream() ;

// Get the file to view
String file = req.getPathTranslated() ;

// No file, nothing to view
if (file == null) {
out.println("No file to view");

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE REQUEST 93

Example 4-10. Dynamically returning static files (continued)

return;

// Get and set the type of the file
String contentType = getServletContext () .getMimeType (file);
res.setContentType (contentType) ;

// Return the file

try {
ServletUtils.returnFile(file, out);

}
catch (FileNotFoundException e) {
out.println("File not found");

}
catch (IOException e) {
out.println("Problem sending file: " + e.getMessage());

}

This servlet first uses getPathTranslated() to get the name of file it needs to
display. Then it uses getMimeType () to find the content type of this file and sets
the response content type to match. Last, it returns the file using the
returnFile() method found in the com.oreilly.servlet.ServletUtils
utility class:

// Send the contents of the file to the output stream
public static void returnFile(String filename, OutputStream out)
throws FileNotFoundException, IOException {
// A FileInputStream is for bytes
FileInputStream fis = null;
try {
fis = new FileInputStream(filename) ;
byte[] buf = new byte[4 * 1024]; // 4K buffer
int bytesRead;
while ((bytesRead = fis.read(buf)) != -1) {
out.write(buf, 0, bytesRead);

}
finally {
if (fis != null) fis.close():

}

The servlet’s error handling is basic—it returns a page that describes the error.
This is acceptable for our simple example (and really more than many programs
seem capable of), but we’ll learn a better way using status codes in the next
chapter.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

94 CHAPTER 4: RETRIEVING INFORMATION

This servlet can be used directly with a URL like this.
http://server:port/servliet/ViewFile/index.html

Or, if you use it as a replacement for the "file" servlet, it is automatically invoked
even for a URL like this.

http://server:port/index.html

Just beware that this servlet is a “proof of concept” example and does not have the
full functionality of the com. sun.server.http.FileServlet servlet.

Determining What Was Requested

A servlet can use several methods to find out exactly what file or servlet the client
requested. After all, only the most conceited servlet would always assume itself to
be the direct target of a request. A servlet may be nothing more than a single link
in a long servlet chain.

No method directly returns the original Uniform Resource Locator (URL) used by
the client to make a request. The javax.servlet.http.HttpUtils class,
however, provides a getRequestURL () method that does about the same thing:*

public static StringBuffer HttpUtils.getRequestURL (HttpServletRequest req)

This method reconstructs the request URL based on information available in the
HttpServletRequest object. It returns a StringBuffer that includes the
scheme (such as HTTP), server name, server port, and extra path information.
The reconstructed URL should look almost identical to the URL used by the
client. Differences between the original and reconstructed URLs should be minor
(that is, a space encoded by the client as "$20" might be encoded by the server as
a "+"). Because this method returns a StringBuffer, the request URL can be
modified efficiently (for example, by appending query parameters). This method
is often used for creating redirect messages and reporting errors.

Most of the time, however, a servlet doesn’t really need the request URL. It just
needs the request URI, which is returned by getRequestURI ():

public String HttpServletRequest.getRequestURI ()

This method returns the Universal Resource Identifier (URI) of the request. For
normal HTTP servlets, a request URI can be thought of as a URL minus the

* Why isn’t there a method that directly returns the original URL shown in the browser? Because the
browser never sends the full URL. The port number, for example, is used by the client to make its
HTTP connection, but it isn’t included in the request made to the web server answering on that port.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE REQUEST 95

scheme, host, port, and query string, but including any extra path information.*
Table 4-2 shows the request URIs for several request URLs.

Table 4-2. URLs and Their URIs

Request URL Its URI Component
http://server:port/servlet/Classname /servlet/Classname
http://server:port/servlet/registeredName /servlet/registered Name
http://server:port/serviet/Classname 2var=val /servlet/Classname @
http://server:port/servlet/Classname/pathinfo /servlet/Classname/pathinfo
http://server:port/servlet/Classname/pathinfo var=val /servlet/Classname/pathinfo
http://server:port/ssi.shtml (SSI) /ssi.shiml
http://server:port/alias. html (alias to a servlet) Jalias. html

a Several servlet engines (including the Java Web Server 1.1.1) have a bug where getRequestURI () er-
roneously includes the query string. The JSDK 2.0 servlet runner behaves correctly.

For servlets in a chain, the request URI is always that of the first servlet in the
chain.

In some situations it is enough for a servlet to know the servlet name under which
it was invoked. You can retrieve this information with getServletPath ():

public String HttpServletRequest.getServletPath()

This method returns the part of the URI that refers to the servlet being invoked or
null if the URI does not directly point to a servlet. The servlet path does not
include extra path information. Table 4-3 shows the servlet names for several
request URLs.

Table 4-3. URLs and Their Servlet Paths

Request URL Its Servlet Path
http://server:port/servlet/Classname /servlet/Classname
http://server:port/servlet/registered Name /servlet/registeredName
http://server:port/servlet/Classname 2var=val /servlet/Classname
http://server:port/serviet/Classname/pathinfo /servlet/Classname
http://server:port/servlet/Classname/pathinfo 2var=val /servlet/Classname
http://server:port/ssi.shtml (SSI) null
http://server:port/alias.html (alias to a servlet) Jalias. himl

* Technically, what is referred to here as a request URI could more formally be called a “request URL
path”. This is because a URI is, in the most precise sense, a general purpose identifier for a resource.
A URL is one type of URI; a URN (Uniform Resource Name) is another. For more information on
URIs, URLs, and URNS, see RFC 1630 at http://www.ietf.org/rfc/rfc1 630.txt.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

96 CHAPTER 4: RETRIEVING INFORMATION

For servlets in a filter chain, the servlet path is always the same as the path of the first
servlet in the chain. If the request URI does not point at a servlet,
getServletPath() returns null. It does not matter that a servlet (such as the
file servlet) may have handled the request behind the scenes or that the request
eventually ended up in a servlet.

For example, if the client requests the page /index.html and the content goes
through the Deblink servlet from Chapter 2, HTTP Servlet Basics, the Deblink
servlet has a null servlet path—the original request was for a static file, not a servlet.
If, however, the client requests /alias.html—which is a direct alias to a servlet—both
that servlet and the Deblink servlet have a servlet path of /alias. himl.

A servlet invoked as a server-side include behaves similarly. If it is embedded in a
static file, it too has a null servlet path. The only way for it to have a non-null
servlet path is if it is part of a servlet chain started by a servlet.

An Improved Counter

We can make use of the request URI information to improve our counter servlet.
The counter example from Chapter 3 could count only its own accesses. A real
counter has to be able to count accesses to pages other than itself. There are two
elegant ways to accomplish this: use the counter as an SSI servlet embedded in a
page or use the counter in a servlet chain where it can replace any instances of the
<COUNT> tag with the appropriate number. For each approach, a servlet can use
the getRequestURI () method to associate a separate count with each requested
URL

Example 4-11 shows a GenericCounter servlet superclass that knows how to
manage a hashtable that stores counts for different URIs. Example 4-12 and
Example 4-13 show servlets that subclass GenericCounter to act as a server-side
include counter and a chain-based counter, respectively.”

Example 4-11. A generic counter superclass

import java.io.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class GenericCounter extends HttpServlet {
private Hashtable counts = new Hashtable();
public void init(ServletConfig config) throws ServletException {

// Always call super.init(config) first
super.init (config) ;

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE REQUEST 97

Example 4-11. A generic counter superclass (continued)

// Try to load the initial page counts from the saved persistent state
try {
FileReader fileReader = new FileReader (getClass() .getName() + ".counts");
BufferedReader bufferedReader = new BufferedReader (fileReader) ;
String line = null;
String uri = null;
String count = null;
int[] holder = null; // holder for the count, to make it an object
while ((line = bufferedReader.readLine()) != null) {

StringTokenizer tokenizer = new StringTokenizer (line);
if (tokenizer.countTokens() < 2) continue; // bogus line
uri = tokenizer.nextToken/() ;
count = tokenizer.nextToken() ;
// Store the uri/count pair in the counts hashtable
// The count is saved as an int[l] to make it an "object"
try {
holder = new int[1];

holder[0] = Integer.parselnt (count);
counts.put (uri, holder) ;
}
catch (NumberFormatException e) { } // bogus line
}
}
catch (FileNotFoundException e€) { } // no saved state
catch (IOException e) { } // problem during read
}

// Increment and return the count for the given URI
public int incrementAndGetCount (String uri) {
int[] holder = (int[])counts.get (uri);
if (holder == null) {
// Initialize the count to 0
holder = new int[1];
holder[0] = 0;
counts.put (uri, holder); // save the holder
}
holder[0]++; // increment
return holder([0];

public void destroy() {
// Try to save the accumulated count

* For Example 4-12, please note that the Java Web Server 1.1.1 has a bug where the PrintWriter re-
turned by getWriter () doesn’t generate output for servlets used as server side includes. See to
Chapter 2 for more information.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

98 CHAPTER 4: RETRIEVING INFORMATION

Example 4-11. A generic counter superclass (continued)

try {
FileWriter fileWriter = new FileWriter (getClass() .getName() + ".counts");
BufferediWriter bufferedWriter = new BufferedWriter (fileWriter) ;
Enumeration keys = counts.keys();
Enumeration elements = counts.elements();
String output = null;
while (keys.hasMoreElements () && elements.hasMoreElements()) {
bufferedWriter.write (keys.nextElement () + " " +
elements.nextElement () + "\n");
}
bufferedwriter.close() ;
fileWriter.close();
return;
}
catch (IOException e) { } // problem during write

Example 4-12. A server-side include counter

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class SSICounter extends GenericCounter {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
PrintWriter out = res.getWriter();

// Fetch the page we're on.
String uri = reqg.getRequestURI();

// Get and increment the count for that page
int count = incrementAndGetCount (uri) ;

// Fulfull our purpose: print the count
out.println(count) ;

Example 4-13. A chain-based counter that replaces <COUNT> with the hit count

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ChainCounter extends GenericCounter {

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE REQUEST 99

Example 4-13. A chain-based counter that replaces <COUNT> with the hit count (continued)

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

String contentType = req.getContentType() ;
res.setContentType (contentType) ;

PrintWriter out = res.getWriter();

// Fetch the page we're on.
String uri = req.getRequestURI();

// Get and increment the count
int count = incrementAndGetCount (uri) ;

// Prepare to read the input
BufferedReader reader = req.getReader();

String line = null;
while ((line = reader.readLine()) != null) {
line = replace(line, "<COUNT>", "" + count); // case sensitive

out.println(line) ;

public void doPost (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
doGet (req, res);

private String replace(String line, String oldString, String newString) {
int index = 0;
while ((index = line.indexOf (0ldString, index)) >= 0) {
line = line.substring(0, index) +
newString +
line.substring(index + oldString.length());
index += newString.length();
}

return line;

How It Was Requested

Besides knowing what was requested, a servlet has several ways of finding out
details about how it was requested. The getScheme () method returns the scheme
used to make this request:

public String ServletRequest.getScheme ()

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

100 CHAPTER 4: RETRIEVING INFORMATION

Examples include "http", "https", and "ftp", as well as the newer Java-specific
schemes "jdbc" and "rmi". There is no direct CGI counterpart (though some
CGI implementations have a SERVER_URL variable that includes the scheme). For
HTTP servlets, this method indicates whether the request was made over a secure
connection using the Secure Sockets Layer (SSL), as indicated by the scheme
"https", or if it was an insecure request, as indicated by the scheme "http".

The getProtocol () method returns the protocol and version number used to
make the request:

public String ServletRequest.getProtocol ()

The protocol and version number are separated by a slash. The method returns
null if no protocol could be determined. For HTTP servlets, the protocol is
usually vVHTTP/1.0v or VHTTP/1.1". HTTP servlets can use the protocol version to
determine if it’s okay with the client to use the new features in HTTP Version 1.1.

To find out what method was used for a request, a servlet uses getMethod ():
public String HttpServletRequest.getMethod ()

This method returns the HTTP method used to make the request. Examples
include "GET", "POST", and "HEAD". The service() method of the Http
Servlet implementation uses this method in its dispatching of requests.

Request Headers

HTTP requests and responses can have a number of associated HTTP “headers”.
These headers provide some extra information about the request (or response).
The HTTP Version 1.0 protocol defines literally dozens of possible headers; the
HTTP Version 1.1 protocol includes even more. A description of all the headers
extends beyond the scope of this book; we discuss only the headers most often
accessed by servlets. For a full list of HTTP headers and their uses, we recommend
Web Client Programming by Clinton Wong (O’Reilly) or Webmaster in a Nutshell by
Stephen Spainhour and Valerie Quercia (O’Reilly).

A servlet rarely needs to read the HTTP headers accompanying a request. Many of
the headers associated with a request are handled by the server itself. Take, for
example, how a server restricts access to its documents. The server uses HTTP
headers, and servlets need not know the details. When a server receives a request for
a restricted page, it checks that the request includes an appropriate
Authorization header that contains a valid username and a password. If it
doesn’t, the server itself issues a response containing a WWw-Authenticate header,
to tell the browser its access to a resource was denied. When the client sends a request

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE REQUEST 101

that includes the proper Authorization header, the server grants the access and
gives any servlet invoked access to the user’s name via the getRemoteUser () call.

Other headers are used by servlets, but indirectly. A good example is the Last-
Modified and If-Last-Modified pair discussed in Chapter 3. The server itself
sees the If-Last-Modified header and calls the servlet’s getLastModified()
method to determine how to proceed.

There are a few HTTP headers that a servlet may want to read on occasion. These
are listed in Table 4-4.

Table 4-4. Useful HT'TP Request Headers

Header Usage

Accept Specifies the media (MIME) types the client prefers to accept, sepa-
rated by commas.2 Each media type is divided into a type and subtype
given as type/subtype. An asterisk (*) wildcard is allowed for the
subtype (type/*) or for both the type and subtype (*/*). For
example:

Accept: image/gif, image/jpeg, text/*, */*

A servlet can use this header to help determine what type of content
to return. If this header is not passed as part of the request, the servlet
can assume the client accepts all media types.

User-Agent Gives information about the client software. The format of the
returned string is relatively free form, but it often includes the
browser name and version as well as information about the machine
on which it is running. Netscape 3.01 on an SGI Indy running IRIX 6.
2 reports:

User-Agent: Mozilla/3.01SC-SGI (X11; I; IRIX 6.2 IP22)

Microsoft Internet Explorer 4.0 running on a Windows 95 machine
reports:

User-Agent: Mozilla/4.0 (compatible; MSIE 4.0; Windows 95)

A servlet can use this header to keep statistics or to customize its
response based on browser type.

Referer Gives the URL of the document that refers to the requested URL
(that is, the document that contains the link the client followed to
access this document).b For example:

Referer: http://www.gamelan.com/pages/Gamelan.sites.home.html

A servlet can use this header to keep statistics or, if there’s some error
in the request, to keep track of the documents with errors.

Authorization | Provides the client’s authorization to access the requested URI,
including a username and password encoded in Base64. Servlets can
use this for custom authorization, as discussed in Chapter 8, Security.

a Some older browsers send a separate Accept header for each media type. This can confuse some serv-
let engines, including the Java Web Server.

b The properly-spelled Referrer header gives you nothing.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

102 CHAPTER 4: RETRIEVING INFORMATION

Accessing header values

HTTP header values are accessed through the HttpServletRequest object. A
header value can be retrieved as a String, a long (representing a Date), or an
int, using getHeader (), getDateHeader (), and getIntHeader (), respectively:

public String HttpServletRequest.getHeader (String name)
public long HttpServletRequest.getDateHeader (String name)
public int HttpServletRequest.getIntHeader (String name)

getHeader () returns the value of the named header as a String or null if the
header was not sent as part of the request. The name is case insensitive, as it is for
all these methods. Headers of all types can be retrieved with this method.

getDateHeader () returns the value of the named header as a long (repre-
senting a Date) that specifies the number of milliseconds since the epoch) or -1 if
the header was not sent as part of the request. This method throws an
IllegalArgumentException when called on a header whose value cannot be
converted to a Date. The method is useful for handling headers like Last-
Modified and If-Modified-Since.

getIntHeader () returns the value of the named header as an int or -1 if the
header was not sent as part of the request. This method throws a NumberFormat
Exception when called on a header whose value cannot be converted to an int.

A servlet can also get the names of all the headers it can access using
getHeaderNames ():

public Enumeration HttpServletRequest.getHeaderNames ()

This method returns the names of all the headers as an Enumeration of String
objects. It returns an empty Enumeration if there were no headers. The Servlet
API gives servlet engine implementations the right to not allow headers to be
accessed in this way, in which case this method returns null.

Example 4-14 demonstrates the use of these methods in a servlet that prints infor-
mation about its HTTP request headers.

Example 4-14. Snooping headers

import java.io.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class HeaderSnoop extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE REQUEST 103

Example 4-14. Snooping headers (continued)

res.setContentType ("text/plain") ;
PrintWriter out = res.getWriter();

out.println("Request Headers:");
out.println();
Enumeration enum = req.getHeaderNames () ;
while (enum.hasMoreElements()) {

String name = (String) enum.nextElement () ;

String value = req.getHeader (name) ;

if (value != null) {

out.println(name + ": " + value);

}
Some example output from this servlet might look like this:

Request Headers:

Connection: Keep-Alive

If-Modified-Since: Saturday, 13-Jun-98 20:50:31 GMT; length=297

User-Agent: Mozilla/4.05 [en] (X11; I; IRIX 6.2 IP22)

Host: localhost:8080

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*
Accept-Language: en

Accept-Charset: iso-8859-1,*,utf-8

Cookie: jwssessionid=A3KBBlYAAAAABQDGPMSQAAA

Headers in servlet chains

Servlet chains add an interesting twist to how servlets handle headers. Unlike all
other servlets, a servlet in the middle or at the end of a servlet chain reads header
values not from the client’s request, but from the previous servlet’s response.

The power and flexibility of this approach comes from the fact that a servlet can
intelligently process a previous servlet’s output, not only in body content, but in
header values. For example, it can add extra headers to the response or change
the value of existing headers. It can even suppress the previous servlet’s headers.

But power comes with responsibilities: unless a chained servlet specifically reads
the previous servlet’s response headers and sends them as part of its own response,
the headers are not passed on and will not be seen by the client. A well-behaved
chained servlet always passes on the previous servlet’s headers, unless it has a
specific reason to do otherwise.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

104 CHAPTER 4: RETRIEVING INFORMATION

The code shown in Example 4-15 uses getHeaderNames () in combination with
getHeader () and setHeader () to pass on the headers from the previous servlet
to the client (or possibly to another servlet in the chain). The only header given
special treatment is the Content-Length header. This header’s value reports the
length of the response in bytes—a value that is likely to change during the
chaining process and so not appropriate to send on. Note that you haven’t seen
the setHeader () method before. It can be used to, well, set a header.

Example 4-15. Passing on the headers

Enumeration enum = req.getHeaderNames () ;

if (enum != null) { // to be safe across all implementations
while (enum.hasMoreElements()) {
String header = (String)enum.nextElement () ;

if ("Content-Length") .equalsIgnoreCase (header))
continue;

String value = req.getHeader (header) ;

res.setHeader (header, value);

}

An HTTP servlet designed to function in a chain should include code similar to
this early on in its handling of a request, so as to pass on the appropriate headers.

Wading the Input Stream

Each request handled by a servlet has an input stream associated with it. Just as a
servlet can write to a PrintWriter or OutputStream associated with its response
object, it can read from a Reader or InputStream associated with its request
object. The data read from the input stream can be of any content type and of any
length. The input stream has three purposes:

® To pass a chained servlet the response body from the previous servlet
¢ To pass an HTTP servlet the content associated with a POST request

* To pass a non-HTTP servlet the raw data sent by the client

To read character data from the input stream, you should use getReader () to
retrieve the input stream as a Buf feredReader object:

public BufferedReader ServletRequest.getReader () throws IOException

The advantage of using a BufferedReader for reading character-based data is
that it should translate charsets as appropriate. This method throws an
IllegalStateException if getInputStream() has been called before on this
same request. It throws an UnsupportedEncodingException if the character
encoding of the input is unsupported or unknown.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE REQUEST 105

To read binary data from the input stream, use getInputStream() to retrieve the
input stream as a ServletInputStream object:

public ServletInputStream ServletRequest.getInputStream() throws IOException

A ServletInputStreamis a direct subclass of InputStream and can be treated as
a normal InputStream, with the added ability to efficiently read input a line at a
time into an array of bytes. The method throws an IllegalStateException if
getReader () has been called before on this same request. Once you have the
ServletInputStream, you can read a line from it using readLine ():

public int ServletInputStream.readLine (byte b[], int off, int len)
throws IOException

This method reads bytes from the input stream into the byte array b, starting at
an offset in the array given by of£. It stops reading when it encounters an '\n' or
when it has read 1len number of bytes. The ending '\n' character is read into the
buffer as well. The method returns the number of bytes read or -1 if the end of
the stream is reached.

A servlet can also check the content type and the length of the data being sent via the
input stream, using getContentType () and getContentLength (), respectively:

public String ServletRequest.getContentType ()
public int ServletRequest.getContentLength ()

getContentType () returns the media type of the content being sent via the input
stream or null if the type is not known (such as when there is no data).
getContentLength () returns the length, in bytes, of the content being sent via
the input stream or -1 if this not known.

Chaining servlets using the input stream

A servlet in a servlet chain receives its response body from the previous servlet in
the chain through its input stream. This use was first shown in the Deblink servlet
in Chapter 2, HT'TP Servlet Basics. The pertinent section is shown again here:

String contentType = reqg.getContentType(); // get the incoming type
if (contentType == null) return; // nothing incoming, nothing to do
res.setContentType (contentType); // set outgoing type to be incoming type

BufferedReader br = req.getReader() ;

String line = null;

while ((line = br.readLine()) != null) {
line = replace(line, "<BLINK>", "");
line = replace(line, "</BLINK>", "");
out.println(line) ;

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

106 CHAPTER 4: RETRIEVING INFORMATION

Notice the use of getContentType () to retrieve the content type of the previous
servlet’s output. Also notice that getContentLength() is not used. We don’t
need to use it because all read() and readLine() methods indicate that they
have reached the end of the stream with special return values. In fact, it’s better
not to use getContentLength () in a servlet chain because it is unsupported in
many servlet engine implementations. Presumably the reason is that the server
may choose to tie the output stream of one servlet directly to the input stream of
the next servlet, giving no chance to determine a total content length.

Handling POST requests using the input stream

It is a rare occurrence when a servlet handling a POST request is forced to use its
input stream to access the POST data. Typically, the POST data is nothing more
than encoded parameter information, which a servlet can conveniently retrieve
with its getParameter () method.

A servlet can identify this type of POST request by checking the content type of
the input stream. If it is of type application/x-www-form-urlencoded, the data
can be retrieved with getParameter() and similar methods. Example 4-16
demonstrates a servlet that keys off the input stream’s content type to handle
POST requests.

Example 4-16. Reading paramelers passed by POST

import java.io.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class PostParams extends HttpServlet {

public void doPost (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType ("text/plain") ;
PrintWriter out = res.getWriter();

if ("application/x-www-form-urlencoded".equals (req.getContentType())) {

Enumeration enum = req.getParameterNames () ;
while (enum.hasMoreElements()) {

String name = (String) enum.nextElement () ;

String values[] = req.getParameterValues (name) ;

if (values != null) {

for (int i = 0; i < values.length; i++) {
out.println(name + " (" + i + "): " + values[i]);

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE REQUEST 107

Example 4-16. Reading parameters passed by POST (continued)

In case you were wondering, the odd arrangement of code that checks the
request’s content type is arranged to avoid a NullPointerException if the
getContentType () call returns null.

A servlet may wish to call the getContentLength() method before calling
getParameter () to prevent denial of service attacks. A rogue client may send an
absurdly large amount of data as part of a POST request, hoping to slow the server
to a crawl as the servlet’s getParameter () method churns over the data. A servlet
can use getContentLength() to verify that the length is reasonable, perhaps less
than 4K, as a preventive measure.

Receiving files using the input stream

A servlet can also receive a file upload using its input stream. Before we see how,
it’s important to note that file uploading is experimental and not supported in all
browsers. Netscape first supported file uploads with Netscape Navigator 3;
Microsoft first supported it with Internet Explorer 4.

The full file upload specification is contained in experimental RFC 1867, available
at http://www.ietlf.org/rfc/rfc1867.txt. The short summary is that any number of files
and parameters can be sent as form data in a single POST request. The POST
request is formatted differently than standard application/x-www-form-
urlencoded form data and indicates this fact by setting its content type to
multipart/form-data.

It’s fairly simple to write the client half of a file upload. The following HTML
generates a form that asks for a user’s name and a file to upload. Note the addi-
tion of the ENCTYPE attribute and the use of a FILE input type:

<FORM ACTION="/servlet/UploadTest" ENCTYPE="multipart/form-data" METHOD=POST>
What is your name? <INPUT TYPE=TEXT NAME=submitter>

Which file do you want to upload? <INPUT TYPE=FILE NAME=file>

<INPUT TYPE=SUBMIT>

</FORM>

A user receiving this form sees a page that looks something like Figure 4-3. A file-
name can be entered in the text area, or it can be selected by browsing. After
selection, the user submits the form as usual.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

108 CHAPTER 4: RETRIEVING INFORMATION

Figure 4-3. Choosing a file to upload

The server’s responsibilities during a file upload are slightly more complicated.
From the receiving servlet’s perspective, the submission is nothing more than a
raw data stream in its input stream—a data stream formatted according to the
multipart/form-data content type given in RFC 1867. The Servlet API, lamen-
tably, provides no methods to aid in the parsing of the data. To simplify your life
(and ours since we don’t want to explain RFC 1867), Jason has written a utility
class that does the work for you. It’s named MultipartRequest and is shown in
Example 4-18 later in this section.

MultipartRequest wraps around a ServletRequest and presents a simple API
to the servlet programmer. The class has two constructors:

Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE REQUEST 109

public MultipartRequest (ServletRequest request, String saveDirectory,
int maxPostSize) throws IOException

public MultipartRequest (ServletRequest request,
String saveDirectory) throws IOException

Each of these methods creates a new MultipartRequest object to handle the
specified request, saving any uploaded files to saveDirectory. Both constructors
actually parse the multipart/form-data content and throw an IOException if
there’s any problem. The constructor that takes a maxPostSize parameter also
throws an IOException if the uploaded content is larger than maxPostSize. The
second constructor assumes a default maxPostSize of 1 MB.

The MultipartRequest class has six public methods that let you get at informa-
tion about the request. You’ll notice that many of these methods are modeled
after ServletRequest methods. Use getParameterNames () to retrieve the
names of all the request parameters:

public Enumeration MultipartRequest.getParameterNames ()

This method returns the names of all the parameters as an Enumeration of
String objects or an empty Enumeration if there are no parameters.

To get the value of a named parameter, use getParameter ():
public String MultipartRequest.getParameter (String name)

This method returns the value of the named parameter as a String or null if the
parameter was not given. The value is guaranteed to be in its normal, decoded
form. If the parameter has multiple values, only the last one is returned.

Use getFileNames () to get a list of all the uploaded files:
public Enumeration MultipartRequest.getFileNames ()

This method returns the names of all the uploaded files as an Enumeration of
String objects, or an empty Enumeration if there are no uploaded files. Note
that each filename is the name specified by the HTML form’s name attribute, not
by the user. Once you have the name of a file, you can get its file system name
using getFilesystemName ():

public String MultipartRequest.getFilesystemName (String name)

This method returns the file system name of the specified file or null if the file
was not included in the upload. A file system name is the name specified by the
user. It is also the name under which the file is actually saved. You can get the
content type of the file with getContentType ():

public String MultipartRequest.getContentType (String name)

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

110 CHAPTER 4: RETRIEVING INFORMATION

This method returns the content type of the specified file (as supplied by the
client browser) or null if the file was not included in the upload. Finally, you can
geta java.io.File object for the file with getFile():

public File MultipartRequest.getFile(String name)

This method returns a File object for the specified file saved on the server’s file
system or null if the file was not included in the upload.

Example 4-17 shows how a servlet uses MultipartRequest. The servlet does
nothing but display the statistics for what was uploaded. Notice that it does not
delete the files it saves.

Example 4-17. Handling a file upload

import java.io.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

import com.oreilly.servlet.MultipartRequest;
public class UploadTest extends HttpServlet {

public void doPost (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType ("text/html") ;
PrintWriter out = res.getWriter();

try {
// Blindly take it on faith this is a multipart/form-data request

// Construct a MultipartRequest to help read the information.
// Pass in the request, a directory to save files to, and the
// maximum POST size we should attempt to handle.
// Here we (rudely) write to the server root and impose 5 Meg limit.
MultipartRequest multi =
new MultipartRequest(reqg, ".", 5 * 1024 * 1024);

out.println ("<HTML>") ;
"<HEAD><TITLE>UploadTest</TITLE></HEAD>") ;
out.println("<BODY>") ;
out.println("<H1>UploadTest</H1>") ;

out.println

(
(
(
(

// Print the parameters we received
out.println("<H3>Params:</H3>");
out.println("<PRE>") ;

Enumeration params = multi.getParameterNames () ;

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE REQUEST 111

Example 4-17. Handling a file upload (continued)

while (params.hasMoreElements()) {
String name = (String)params.nextElement () ;
String value = multi.getParameter (name) ;
out.println(name + " = " + value);

}

out.println("</PRE>") ;

// Show which files we received
out.println("<H3>Files:</H3>");
out.println("<PRE>") ;
Enumeration files = multi.getFileNames () ;
while (files.hasMoreElements()) {
String name = (String)files.nextElement () ;
String filename = multi.getFilesystemName (name) ;
String type = multi.getContentType (name) ;
File £ = multi.getFile (name) ;
out.println("name: " + name);
out.println("filename: " + filename);
out.println("type: " + type);
if (£ != null) {
out.println("length: " + f.length());
out.println();
}
out.println("</PRE>") ;

}

catch (Exception e) {
out.println("<PRE>") ;
e.printStackTrace (out) ;
out.println("</PRE>") ;

}

out.println("</BODY></HTML>") ;

}

The servlet passes its request object to the MultipartRequest constructor, along
with a directory relative to the server root where the uploaded files are to be saved
(because large files may not fit in memory) and a maximum POST size of 5 MB.
The servlet then uses MultipartRequest to iterate over the parameters that were
sent. Notice that the MultipartRequest API for handling parameters matches
that of ServletRequest. Finally, the servlet uses its MultipartRequest to iterate
over the files that were sent. For each file, it gets the file’s name (as specified on
the form), file system name (as specified by the user), and content type. It also
gets a File reference and uses it to display the length of the saved file. If there are
any problems, the servlet reports the exception to the user.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

112 CHAPTER 4: RETRIEVING INFORMATION

Example 4-18 shows the code for MultipartRequest. This class could be written
more elegantly using a regular expression library, as discussed in Chapter 13, Odds
and Ends; however, not doing so allows this class to be self-contained and works
just as well. We aren’t going to elaborate on the class here—you should read the
comments if you want to understand everything that is going on. This class uses
some of the techniques that we’ve covered in this chapter, so it is a good review of
the material. You should also feel free to skip this example for now and come back
to it later if you’d like.

Example 4-18. The MultipartRequest class

package com.oreilly.servlet;

import java.io.*;
import java.util.*;
import javax.servlet.*;

public class MultipartRequest {
private static final int DEFAULT MAX POST SIZE = 1024 * 1024; // 1 Meg

private ServletRequest req;
private File dir;
private int maxSize;

private Hashtable parameters = new Hashtable(); // name - value
private Hashtable files = new Hashtable(); // name - UploadedFile

public MultipartRequest (ServletRequest request,
String saveDirectory) throws IOException {
this (request, saveDirectory, DEFAULT MAX_POST SIZE);

public MultipartRequest (ServletRequest request,
String saveDirectory,
int maxPostSize) throws IOException {
// Sanity check values
if (request == null)
throw new IllegalArgumentException ("request cannot be null");
if (saveDirectory == null)
throw new IllegalArgumentException ("saveDirectory cannot be null");
if (maxPostSize <= 0) {
throw new IllegalArgumentException ("maxPostSize must be positive");

// Save the request, dir, and max size
req = request;
dir = new File(saveDirectory) ;

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE REQUEST 113

Example 4-18. The MultipartRequest class (continued)

maxSize = maxPostSize;

// Check saveDirectory is truly a directory
if (!dir.isDirectory())
throw new IllegalArgumentException("Not a directory: " + saveDirectory) ;

// Check saveDirectory is writable
if (!dir.canWrite())
throw new IllegalArgumentException ("Not writable: " + saveDirectory);

// Now parse the request saving data to "parameters" and "files";

// write the file contents to the saveDirectory
readRequest () ;

public Enumeration getParameterNames () {
return parameters.keys() ;

public Enumeration getFileNames() {
return files.keys();

public String getParameter (String name) {

try {
String param = (String)parameters.get (name) ;
if (param.equals("")) return null;
return param;

}

catch (Exception e) {
return null;

public String getFilesystemName (String name) {

try {
UploadedFile file = (UploadedFile)files.get (name) ;
return file.getFilesystemName(); // may be null

}

catch (Exception e) {
return null;

public String getContentType (String name) {

try {
UploadedFile file = (UploadedFile)files.get (name) ;
return file.getContentType(); // may be null

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

114 CHAPTER 4: RETRIEVING INFORMATION

Example 4-18. The MultipartRequest class (continued)

}
catch (Exception e) {
return null;

public File getFile(String name) {

try {
UploadedFile file = (UploadedFile)files.get (name) ;
return file.getFile(); // may be null

}

catch (Exception e) {
return null;

protected void readRequest () throws IOException {
// Check the content type to make sure it's "multipart/form-data"
String type = reqg.getContentType() ;
if (type == null ||
I'type.toLowerCase () .startsWith ("multipart/form-data")) {
throw new IOException ("Posted content type isn't multipart/form-data");

// Check the content length to prevent denial of service attacks
int length = req.getContentLength() ;
if (length > maxSize) {
throw new IOException("Posted content length of " + length +
" exceeds limit of " + maxSize);

// Get the boundary string; it's included in the content type.
// Should look something like "---—-———---—————————— 12012133613061"
String boundary = extractBoundary (type) ;
if (boundary == null) {
throw new IOException ("Separation boundary was not specified");

// Construct the special input stream we'll read from
MultipartInputStreamHandler in =
new MultipartInputStreamHandler (req.getInputStream(), boundary, length);

// Read the first line, should be the first boundary
String line = in.readLine();
if (line == null) {
throw new IOException ("Corrupt form data: premature ending");

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE REQUEST 115

Example 4-18. The MultipartRequest class (continued)

// Verify that the line is the boundary
if (!line.startsWith(boundary)) {
throw new IOException ("Corrupt form data: no leading boundary");

// Now that we're just beyond the first boundary, loop over each part
boolean done = false;
while (!done) ({

done = readNextPart (in, boundary) ;

protected boolean readNextPart (MultipartInputStreamHandler in,
String boundary) throws IOException {

// Read the first line, should look like this:
// content-disposition: form-data; name="fieldl"; filename="filel.txt"
String line = in.readLine();
if (line == null) {

// No parts left, we're done

return true;

// Parse the content-disposition line

String[] dispInfo = extractDispositionInfo(line);
String disposition = dispInfol[0];

String name = dispInfo[l];

String filename = dispInfol[2];

// Now onto the next line. This will either be empty
// or contain a Content-Type and then an empty line.
line = in.readLine();
if (line == null) {

// No parts left, we're done

return true;

// Get the content type, or null if none specified
String contentType = extractContentType (line) ;
if (contentType != null) {

// Eat the empty line

line = in.readLine();

if (line == null || line.length() > 0) { // line should be empty

throw new
TOException("Malformed line after content type: " + line);

}
else {
// Assume a default content type

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

116 CHAPTER 4: RETRIEVING INFORMATION

Example 4-18. The MultipartRequest class (continued)

contentType = "application/octet-stream";

// Now, finally, we read the content (end after reading the boundary)
if (filename == null) {
// This is a parameter
String value = readParameter (in, boundary) ;
parameters.put (name, value);
}
else {
// This is a file
readAndSaveFile(in, boundary, filename);
if (filename.equals ("unknown")) {
files.put (name, new UploadedFile(null, null, null));
}
else {
files.put (name,
new UploadedFile(dir.toString(), filename, contentType));

}
return false; // there's more to read

protected String readParameter (MultipartInputStreamHandler in,
String boundary) throws IOException {
StringBuffer sbuf = new StringBuffer();
String line;

while ((line = in.readLine()) != null) {
if (line.startsWith(boundary)) break;
sbuf.append(line + "\r\n"); // add the \r\n in case there are many lines
}
if (sbuf.length() == 0) {
return null; // nothing read
}
sbuf.setLength(sbuf.length() - 2); // cut off the last line's \r\n
return sbuf.toString(); // no URL decoding needed

protected void readAndSaveFile (MultipartInputStreamHandler in,
String boundary,
String filename) throws IOException {
File f = new File(dir + File.separator + filename);
FileOutputStream fos = new FileOutputStream(f) ;
BufferedOutputStream out = new BufferedOutputStream(fos, 8 * 1024); // 8K

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE REQUEST 117

Example 4-18. The MultipartRequest class (continued)

byte[] bbuf = new byte[8 * 1024]; // 8K
int result;
String line;

// ServletInputStream.readlLine() has the annoying habit of

// adding a \r\n to the end of the last line.

// Since we want a byte-for-byte transfer, we have to cut those chars.
boolean rnflag = false;

while ((result = in.readLine(bbuf, 0, bbuf.length)) != -1) {
// Check for boundary
if (result > 2 && bbuf[0] == '-' && bbuf[l] == '-') { // quick pre-check

line = new String(bbuf, 0, result, "ISO-8859-1");
if (line.startsWith(boundary)) break;
}
// Are we supposed to write \r\n for the last iteration?
if (rnflag) {
out.write('\r'); out.write('\n');
rnflag = false;
}
// Write the buffer, postpone any ending \r\n
if (result >= 2 &&
bbuf [result - 2] == '\r' &&
bbuf [result - 1] == '\n') {
out.write(bbuf, 0, result - 2); // skip the last 2 chars
rnflag = true; // make a note to write them on the next iteration
}
else {
out.write(bbuf, 0, result);

}

out.flush();
out.close();
fos.close() ;

private String extractBoundary(String line) {
int index = line.indexOf ("boundary=") ;
if (index == -1) {
return null;
}
String boundary = line.substring(index + 9); // 9 for "boundary="

// The real boundary is always preceded by an extra "--"
boundary = "--" + boundary;

return boundary;

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

118 CHAPTER 4: RETRIEVING INFORMATION

Example 4-18. The MultipartRequest class (continued)

private String[] extractDispositionInfo(String line) throws IOException {
// Return the line's data as an array: disposition, name, filename
String[] retval = new String[3];

// Convert the line to a lowercase string without the ending \r\n
// Keep the original line for error messages and for variable names.
String origline = line;

line = origline.toLowerCase() ;

// Get the content disposition, should be "form-data"
int start = line.indexOf ("content-disposition: ");
int end = line.indexOf(";");
if (start == -1 || end == -1) {
throw new IOException ("Content disposition corrupt: " + origline);
}
String disposition = line.substring(start + 21, end);
if (!disposition.equals("form-data")) {
throw new IOException("Invalid content disposition: " + disposition);

// Get the field name

start = line.indexOf ("name=\"", end); // start at last semicolon
end = line.indexOf ("\"", start + 7); // skip name=\"
if (start == -1 || end == -1) {

throw new IOException("Content disposition corrupt: " + origline);
}

String name = origline.substring(start + 6, end);

// Get the filename, if given
String filename = null;

start = line.indexOf ("filename=\"", end + 2); // start after name
end = line.indexOf ("\"", start + 10); // skip filename=\"
if (start != -1 && end != -1) { // note the !=

filename = origline.substring(start + 10, end);
// The filename may contain a full path. Cut to just the filename.

int slash =
Math.max (filename.lastIndexOf('/'), filename.lastIndexOf('\\'));
if (slash > -1) {
filename = filename.substring(slash + 1); // past last slash
}
if (filename.equals("")) filename = "unknown"; // sanity check

// Return a String array: disposition, name, filename

retval[0] = disposition;
retval[l] = name;
retval[2] = filename;

return retval;

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE REQUEST

119

Example 4-18. The MultipartRequest class (continued)
}

private String extractContentType (String line) throws
String contentType = null;

// Convert the line to a lowercase string
String origline = line;
line = origline.toLowerCase() ;

// Get the content type, if any

if (line.startsWith("content-type")) {
int start = line.indexOf(" ");
if (start == -1) {

IOException {

throw new IOException("Content type corrupt: " + origline);

}
contentType = line.substring(start + 1);
}
else if (line.length() != 0) { // no content type,

so should be empty

throw new IOException("Malformed line after disposition: " + origline);

return contentType;

// A class to hold information about an uploaded file.
//
class UploadedFile {

private String dir;
private String filename;
private String type;

UploadedFile(String dir, String filename, String type)
this.dir = dir;
this.filename = filename;
this.type = type;

public String getContentType() {
return type;

public String getFilesystemName () {
return filename;

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

120 CHAPTER 4: RETRIEVING INFORMATION

Example 4-18. The MultipartRequest class (continued)

public File getFile() {
if (dir == null || filename == null) {
return null;
}
else {
return new File(dir + File.separator + filename);

// A class to aid in reading multipart/form-data from a ServletInputStream.
// It keeps track of how many bytes have been read and detects when the

// Content-Length limit has been reached. This is necessary because some
// servlet engines are slow to notice the end of stream.

//

class MultipartInputStreamHandler {

ServletInputStream in;

String boundary;

int totalExpected;

int totalRead = 0;

byte[] buf = new byte[8 * 1024];

public MultipartInputStreamHandler (ServletInputStream in,
String boundary,
int totalExpected) {
this.in = in;
this.boundary = boundary;
this.totalExpected = totalExpected;

public String readLine() throws IOException {
StringBuffer sbuf = new StringBuffer();
int result;
String line;

do {
result = this.readlLine(buf, 0, buf.length); // this.readLine() does +=
if (result != -1) {
sbuf.append (new String(buf, 0, result, "IS0-8859-1"));
}

} while (result == buf.length); // loop only if the buffer was filled

if (sbuf.length() == 0) {
return null; // nothing read, must be at the end of stream

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE REQUEST 121

Example 4-18. The MultipartRequest class (continued)

sbuf.setLength(sbuf.length() - 2); // cut off the trailing \r\n
return sbuf.toString();

public int readLine(byte b[], int off, int len) throws IOException {
if (totalRead >= totalExpected) {
return -1;
}
else {
int result = in.readLine(b, off, len);
if (result > 0) {
totalRead += result;
}

return result;

Extra Attributes

Sometimes a servlet needs to know something about a request that’s not available
via any of the previously mentioned methods. In these cases, there is one last alter-
native, the getAttribute() method. Remember how ServletContext has a
getAttribute() method that returns server-specific attributes about the server
itself? ServletRequest also has a getAttribute () method:

public Object ServletRequest.getAttribute (String name)

This method returns the value of a server-specific attribute for the request or null
if the server does not support the named request attribute. This method allows a
server to provide a servlet with custom information about a request. For example,
the Java Web Server makes three attributes available: javax.net.ssl.cipher_
suite, javax.net.ssl.peer_certificates, and javax.net.ssl.session. A
servlet running in the Java Web Server can use these attributes to inspect the
details of an SSL connection with the client.

Example 4-19 shows a code snippet that uses getAttribute() to query the server
on the details of its SSL. connection. Remember, these attributes are server-specific
and may not be available in servers other than the Java Web Server.

Example 4-19. Getting the attributes available in the Java Web Server

import javax.security.cert.X509Certificate;

import javax.net.ssl.SSLSession;

out.println("<PRE>") ;

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

122 CHAPTER 4: RETRIEVING INFORMATION

Example 4-19. Gelting the attributes available in the Java Web Server (continued)

// Display the cipher suite in use
String cipherSuite =

(String) req.getAttribute("javax.net.ssl.cipher_suite");
out.println("Cipher Suite: " + cipherSuite);

// Display the client's certificates, if there are any
if (cipherSuite != null) {
X509Certificate[] certChain =
(X509Certificate[]) req.getAttribute("javax.net.ssl.peer_ certificates");
if (certChain != null) {
for (int i = 0; i < certChain.length; i++) {
out.println ("Client Certificate [" + i + "] ="
+ certChain[i].toString());

out.println("</PRE>") ;

The servlet’s output on receiving a VeriSign certificate is shown below. What it
means is discussed in Chapter 8.

Cipher Suite: SSIL_RSA EXPORT WITH RC4_40_MD5
Client Certificate [0] = [

X.509v3 certificate,

Subject is 0ID.1.2.840.113549.1.9.1=#160F6A68756E746572407367692E636F6D,
CN=Jason Hunter, OU=Digital ID Class 1 - Netscape,
OU="www.verisign.com/repository/CPS Incorp. by Ref.,LIAB.LTD(c)96",
OU=VeriSign Class 1 CA - Individual Subscriber, O="VeriSign, Inc.",
L=Internet

Key: algorithm = [RSA], exponent = 0x 010001, modulus =

b35ed5e7 45fc5328 e3f5ce70 838cc25d 0alefd4l dfd4d3elb 64£f70617 528546c8
faed6995 9922a093 7a54584d d466bee7 e7b5c259 c7827489 6478ela9 3aléeddsf

Validity until

Issuer is OU=VeriSign Class 1 CA - Individual Subscriber, O="VeriSign, Inc.

L=Internet
Issuer signature used [MD5withRSA]
Serial number = 20556dc0 9e31ldfad adabelOd 77954704
1
Client Certificate [1] = [
X.509v3 certificate,
Subject is OU=VeriSign Class 1 CA - Individual Subscriber, O="VeriSign,
Inc.", L=Internet
Key: algorithm = [RSA], exponent = 0x 010001, modulus =
b6ldabct 4dd0050d d8ca23d0 6faabd29 92638e2c £86£96d7 2e9d764b 11bl368d
57c9c3fd lccbbafe 1e08ba33 ca95eabe e35bcd06 a8b7791d 442aed73 £2b15283
68107064 91d73e6b £9£f75d9d 14439b6e 97459881 47d12dcb ddbb72d7 4c3f7laa

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE REQUEST 123

e240£f254 39bcléee cf7cecba db3f6c2a b316b186 129dae93 34d5b8d5 d0f73ead
Validity wuntil
Issuer is OU=Class 1 Public Primary Certification Authority, O="VeriSign,

Inc.", C=US
Issuer signature used [MD2withRSA]
Serial number = 521£351d £2707e00 2bbeca59 87044539

1

Servers are free to provide whatever attributes they choose, or even no attributes at
all. The only rules are that attribute names should follow the same convention as
package names, with the package names java.* and javax. * reserved for use by
the Java Software division of Sun Microsystems (formerly known as JavaSoft) and
com.sun. * reserved for use by Sun Microsystems. You should see your server’s
documentation for a list of its attributes. There is no getAttributeNames ()
method to help.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

In this chapter:

* The Structure of a
Response

* Sending a Normal
Response

* Using Persistent
Connections

* HTML Generation

* Status Codes

S endlng H TM L * HTTP Headers

I nf ormation ‘ $f§:gThings Go

In the previous chapter, we learned that a servlet has access to all sorts of informa-
tion—information about the client, about the server, about the request, and even
about itself. Now it’s time to look at what a servlet can do with that information, by
learning how it sets and sends information.

The chapter begins with a review of how a servlet returns a normal HTML
response, fully explaining some methods we glossed over in previous examples.
Next we cover how to reduce the overhead involved in returning a response by
keeping alive a connection to the client. Then we explore the extra things you can
do with HTML and HTTP, including using support classes to objectify the HTML
output, returning errors and other status codes, sending custom header informa-
tion, redirecting the request, using client pull, detecting when the user
disconnects, and writing data to the server log.

The Structure of a Response

An HTTP servlet can return three kinds of things to the client: a single status
code, any number of HTTP headers, and a response body. A status code is an
integer value that describes, as you would expect, the status of the response. The
status code can indicate success or failure, or it can tell the client software to take
further action to finish the request. The numerical status code is often accompa-
nied by a “reason phrase” that describes the status in prose better understood by a
human. Usually, a status code works behind the scenes and is interpreted by the
browser software. Sometimes, especially when things go wrong, a browser may
show the status code to the user. The most famous status code is probably the “404
Not Found” code, sent by a web server when it cannot locate a requested URL.

124
Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SENDING A NORMAL RESPONSE 125

We saw HTTP headers in the previous chapter when clients used them to send
extra information along with a request. In this chapter, we’ll see how a servlet can
send HTTP headers as part of its response.

The response body is the main content of the response. For an HTML page, the
response body is the HTML itself. For a graphic, the response body contains the
bytes that make up the image. A response body can be of any type and of any
length; the client knows what to expect by reading and interpreting the HTTP
headers in the response.

A generic servlet is much simpler than an HTTP servlet—it returns only a
response body to its client. It's possible, however, for a subclass of
GenericServlet to present an API that divides this single response body into a
more elaborate structure, giving the appearance of returning multiple items. In
fact, this is exactly what HTTP servlets do. At the lowest level, a web server sends its
entire response as a stream of bytes to the client. Any methods that set status codes
or headers are abstractions above that.

It’s important to understand this because even though a servlet programmer
doesn’t have to know the details of the HTTP protocol, the protocol does affect
the order in which a servlet can call its methods. Specifically, the HTTP protocol
specifies that the status code and headers must be sent before the response body. A
servlet, therefore, should be careful to always set its status codes and headers
before returning any of its response body. Some servers, including the Java Web
Server, internally buffer some length of a servlet’s response body (usually about
4K)—this allows you some freedom to set the status codes and headers even after a
servlet has written a short amount of response body. However, this behavior is
server implementation dependent, and as a wise servlet programmer, you’ll forget
all about it!

Sending a Normal Response

Let’s begin our discussion of servlet responses with another look at the first servlet
in this book, the HelloWorld servlet, shown in Example 5-1. We hope it looks a lot
simpler to you now than it did back in Chapter 2, HTTP Servlet Basics.

Example 5-1. Hello again

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class HelloWorld extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

126 CHAPTER 5: SENDING HTML INFORMATION

Example 5-1. Hello again (continued)

throws ServletException, IOException {

res.setContentType ("text/html") ;
PrintWriter out = res.getWriter();

out.println ("<HTML>") ;

out.println ("<HEAD><TITLE>Hello World</TITLE></HEAD>") ;
out.println("<BODY>") ;

out.println("<BIG>Hello World</BIG>") ;
out.println("</BODY></HTML>") ;

}

This servlet uses two methods and a class that have been only briefly mentioned
before. The setContentType () method of ServletResponse sets the content
type of the response to be the specified type:

public void ServletResponse.setContentType (String type)
In an HTTP servlet, this method sets the Content-Type HTTP header.

The getWriter () method returns a PrintWriter for writing character-based
response data:

public PrintWriter ServletResponse.getWriter() throws IOException

The writer encodes the characters according to whatever charset is given in the
content type. If no charset is specified, as is generally the case, the writer uses the
ISO-8859-1 (Latin-1) encoding appropriate for Western European languages.
Charsets are covered in depth in Chapter 12, Internationalization, so for now just
remember that it’s good form to always set the content type before you get a
PrintWriter. This method throws an TIllegalStateException if
getOutputStream() has already been called for this response; it throws an
UnsupportedEncodingException if the encoding of the output stream is unsup-
ported or unknown.

In addition to using a PrintWriter to return a response, a servlet can use a
special subclass of java.io.OutputStream to write binary data—the
ServletOutputStream, which is defined in javax.servlet. You can get a
ServletOutputStream with getOutputStream|():

public ServletOutputStream ServletResponse.getOutputStream() throws
IOException

This method returns an ServletOutputStream for writing binary (byte-at-a-time)
response data. No encoding is performed. This method throws an
IllegalStateException if getWriter() has already been called for this
response.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

USING PERSISTENT CONNECTIONS 127

The ServletOutputStream class resembles the standard Java PrintStream class.
In the Servlet API Version 1.0, this class was used for all servlet output, both
textual and binary. In the Servlet API Version 2.0, however, it has been relegated
to handling binary output only. As a direct subclass of OutputStream, it makes
available the write(), flush(), and close() methods of the OutputStream
class. To these it adds its own print () and println() methods for writing most
of the primitive Java data types (see Appendix A, Servlet APl Quick Reference, for a
complete list). The only difference between the ServletOutputStream interface
and that of a PrintStream is that the print() and println() methods of
ServletOutputStream inexplicably cannot directly print parameters of type
Object or char|[].

Using Persistent Connections

Persistent connections (sometimes called “keep-alive” connections) can be used to
optimize the way servlets return content to the client. To understand how this opti-
mization works, you first need to understand how HTTP connections work. We’ll
keep this at a high level and only go as low as is necessary to explain the basic idea.
The details are well covered in Clinton Wong’s Web Client Programming (O’Reilly).

When a client, such as a browser, wants to request a web document from a server,
it begins by establishing a socket connection to the server. Over this connection,
the client makes its request and then receives the server’s response. The client
indicates it has finished its request by sending a blank line; the server, in turn,
indicates that the response is complete by closing the socket connection.

So far, so good. But what if the retrieved page contains tags or <APPLET>
tags that require the client to retrieve more content from the server? Well, another
socket connection is used. If a page contains 10 graphics along with an applet
made up of 25 classes, that’s 36 connections needed to transfer the page. No
wonder some people say WWW stands for the World Wide Wait! This approach is
like ordering a pizza, but making a separate phone call for each topping.

A better approach is to use the same socket connection to retrieve more than one
piece of a page, something called a persistent connection. The trick with a persistent
connection is that the client and server must somehow agree on where the server’s
response ends and where the client’s next request begins. They could try to use a
token like a blank line, but what if the response itself contains a blank line? The
way persistent connections work is that the server just tells the client how big the
response body will be by setting the Content-Length header as part of the
response. The client then knows that after that much response body, it has control
of the socket again.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

128 CHAPTER 5: SENDING HTML INFORMATION

Most servers internally manage the Content-Length header for the static files
they serve, but do not do the same for the servlets they serve. That’s left to the
servlets themselves. A servlet can gain the advantages of a persistent connection
for its dynamic content by using the setContentLength () method:

public void ServletResponse.setContentLength (int len)

This method sets the length (in bytes) of the content being returned by the server.
In an HTTP servlet, the method sets the HITTP Content-Length header. Note
that using this method is optional. If you use it, however, your servlets will be able
to take advantage of persistent connections when they are available. The client will
also be able to display an accurate progress monitor during the download.

If you do call setContentLength (), there are two caveats: a servlet must call this
method before sending the response body, and the given length must be exact. If
it’s off by even one byte, you will have problems.” This sounds more difficult than
it really is. The trick is for a servlet to use a ByteArrayOutputStream to buffer
the output, as shown in Example 5-2.

Example 5-2. A servlet using persistent connections

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class KeepAlive extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType ("text/html") ;

// Set up a PrintStream built around a special output stream
ByteArrayOutputStream bytes = new ByteArrayOutputStream(1024) ;
PrintWriter out = new PrintWriter (bytes, true); // true forces flushing

out.println ("<HTML>") ;

out.println ("<HEAD><TITLE>Hello World</TITLE></HEAD>") ;
out.println("<BODY>") ;

out.println("<BIG>Hello World</BIG>") ;
out.println("</BODY></HTML>") ;

// Set the content length to the size of the buffer
res.setContentLength (bytes.size());

* For example, with the Java Web Server, if a servlet sets the length too short, the server throws an
IOException saying there was a “write past end of stream”. If a servlet sets the length too long, the
client stalls as it waits for the rest of the response.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

HTML GENERATION 129

Example 5-2. A servlet using persistent connections (continued)

// Send the buffer
bytes.writeTo (res.getOutputStream()) ;
}
}

Instead of writing to the PrintWriter returned by getWriter(), this servlet
writes to a PrintWriter built around a ByteArrayOutputStream. This array
grows as necessary to accommodate whatever output the servlet sends. When the
servlet is ready to exit, it sets the content length to be the size of the buffer and
then sends the contents of the buffer to the client. Notice that the bytes are sent
using the byte-oriented ServletOutputStream With this simple modification, a
servlet can take advantage of a persistent connection.

It is important to note that persistent connections come with a price. Buffering all
the output and sending it all in one batch requires extra memory, and it may delay
the time at which a client begins receiving data. For servlets with short responses,
persistent connections make sense, but for servlets with long responses, the
memory overhead and delay probably outweigh the benefit of opening fewer
connections.

It is also important to note that not all servers and not all clients support persis-
tent connections. That said, it’s still appropriate for a servlet to set its content
length. This information will be used by those servers that support persistent
connections and ignored by the others.

HTMI. Generation

No, “HTML Generation” is not another name for the children born in the 1980s,
many of whom grew up browsing the web—although Jason and Will, saddled with
the Generation X moniker, feel that would be only fair. HTML generation is an
alternate way for servlets to send HTML content to clients.

So far, every example in this book has generated its HTML by hand, as one long
String that is sent to the client. This strategy works fine for small web pages (like
book examples), but it quickly becomes unwieldy for larger, more complicated
pages. For that type of page, it’s sometimes helpful to use an HTML generation
package.

An HTML generation package provides a servlet with a set of classes that abstract
away the details of HTML, in particular, the HTML tags. The level of abstraction
depends on the package: some put only the thinnest veneer above the HTML tags,
leaving the nitty-gritty details (such as opening and closing each HTML tag) to the
programmer. Using packages such as these is similar to writing HTML by hand

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

130 CHAPTER 5: SENDING HTML INFORMATION

and is not discussed here. Other packages elegantly abstract away the HIML speci-
fication and treat HTML as just another set of Java objects. A web page is seen as
an object that can contain other HTML objects (such as lists and tables) that can
contain yet more HTML objects (such as list items and table cells). This object-
oriented approach can greatly simplify the task of generating HTML and make a
servlet easier to write, easier to maintain, and sometimes even more efficient.

Generating Hello World

Let’s look at an example to see how object-oriented HTML generation works.
Example 5-3 shows the ubiquitous HelloWorld servlet, rewritten to take advan-
tage of WebLogic’s htmlKona package (available for free evaluation and purchase
at hitp://www.weblogic.com—you may need to poke around a bit to find it).

Example 5-3. Hello, htmiKona

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

import weblogic.html.*;
public class HtmlKonaHello extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType ("text/html") ;

ServletPage page = new ServletPage();
page.getHead () .addElement (new TitleElement ("Hello World")) ;
page.getBody () .addElement (new BigElement ("Hello World!"));

page.output (res.getOutputStream()) ;

Note how all the HTML tags have been replaced with objects. This servlet first
creates a new ServletPage object that represents the web page it will return.
Then, it adds a “Hello World” title to the page’s head section and a “Hello World!”
big string to its body section. Finally, the servlet outputs the page to its output
stream.” That’s how object-oriented HTML generation works: get a page object,
add component objects to it, and send it to the output stream.

* We must use the ServletOutputStream here since htmlKona was not written to output its page to a
PrintWriter.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

HTML GENERATION 131

One advantage of HTML generation should already be apparent: it ensures valid
HTML. HTML generation eliminates the possibility for a misspelled <TITLE>
open tag or a forgotten </TITLE> close tag. We’ll admit it’s not an advantage
worth writing home about, but it is appealing to not have to remember to open
and close every tag or to clutter your code with HTML. Unfortunately, object-
oriented HTML has the fairly serious drawback that it can litter memory with a
multitude of small objects, requiring more frequent garbage collection.

Generating a Weather Forecast

That’s how HTML generation works for a simple web page. Now let’s create a
more complicated web page, so we can test how HTML generation scales to
handle the harder challenges. Figure 5-1 shows a hypothetical web page that
displays the current weather and an extended forecast, the kind you might find on
Yahoo! or CNN. We’ve kept it simple for the sake of space, but it still includes
enough components to make an interesting example.

" . Sebastopol Weather Forecast - Netscape

File Edit Wiew Go Communicator Help

2 v A D} e B o & @

Back Fonward Reload Home Seach Guide Frint Securty Stop
w!' Bookmarks & Location:Ihttp:.n’.-’loc:alhost:BDBDa’weather.html j

Current Conditions m 70°

Extended Forecast Hi Lo
Thursday 82|58
Friday
Saturday
[| [Document: Dane

Figure 5-1. Oh, the weather oulside is delightful

Imagine a servlet creating this web page. Assuming the servlet already has access to
the current conditions and forecast information, how would the servlet do it? We
will examine and discuss three strategies:

¢ Constructing the HTML by hand
¢ Using an HTML generator

e Using an HTML generator creatively

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

132 CHAPTER 5: SENDING HTML INFORMATION

The first strategy, constructing the HTML by hand (Example 5-4), is the standard
approach demonstrated elsewhere in this book. A servlet implemented using this
strategy acts as a baseline against which we can compare the other two servlets.
The second approach, using an HTML generator (Example 5-5), constructs the
web page as a set of objects. This is like the HelloWorld example, just on a much
larger scale. The third strategy, using an HTML generator and some creativity
(Example 5-6), takes the second servlet and simplifies it by reusing objects and
subclassing.

Weather forecast constructed by hand

Example 5-4 shows a servlet that creates the weather forecast page without using
HTML generation, manually sending its content wrapped with almost a hundred
HTML tags.

Example 5-4. Weather forecast constructed by hand

import java.io.*;

import java.text.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class WeatherHtml extends HttpServlet ({
// Some static final variables to populate the page...
// These would normally come from a database or

// maybe another servlet that retrieved it as POST data.

static final int currentTemp = 70;

static final String currentImage = "/images/rainy.gif";

static final String[] forecastDay = { "Thursday",
"Friday",
"Saturday" };

static final String[] forecastImage = { "/images/sunny.gif",
"/images/sunny.gif",
"/images/rainy.gif" };

static final int[] forecastHi = { 82, 82, 73 };

static final int[] forecastLo { 58, 65, 48 };

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType ("text/html") ;
PrintWriter out = res.getWriter();

// Set its title
String title = "Sebastopol Weather Forecast";
out.println ("<HTML>") ;

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

HTML GENERATION 133

Example 5-4. Weather forecast constructed by hand (continued)

out.println ("<HEAD>") ;
out.println("<TITLE>" + title + "</TITLE>");
out.println("</HEAD>") ;

// Start on the body
out.println("<BODY>") ;

// Make a centered table
out.println ("<CENTER>") ;
out.println("<TABLE BORDER=1 CELLPADDING=0 CELLSPACING=0 WIDTH=70%>") ;

// First row

out.println("<TR>") ;

out.println ("<TD><CENTER>") ;

out.println("Current Conditions") ;
out.println("</CENTER></TD>") ;

out.println ("<TD><CENTEr>") ;
out.println("");
out.println("</CENTER></TD>") ;

out.println("<TD COLSPAN=2><CENTER>");
out.println(currentTemp + "°");
out.println("</CENTER></TD>") ;
out.println("</TR>") ;

// Second row

out.println("<TR>") ;

out.println("<TD COLSPAN=2><CENTER>");
out.println("Extended Forecast");

out.println ("</CENTER></TD>") ;

out.println ("<TD><CENTER>");
out.println("Hi");
out.println("</CENTER></TD>") ;

out.println ("<TD><CENTER>");
out.println("Lo");

out.println ("</CENTER></TD>") ;
out.println("</TR>");

// Daily forecast rows

for (int i = 0; i < forecastDay.length; i++) {
out.println("<TR>") ;
out.println ("<TD> ");
out.println(forecastDay[i]) ;
out.println("</TD>") ;
out.println ("<TD><CENTER>") ;

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

134 CHAPTER 5: SENDING HTML INFORMATION

Example 5-4. Weather forecast constructed by hand (continued)

out.println("");
out.println("</CENTER></TD>") ;

out.println ("<TD><CENTER>");

out.println(forecastHi[i]);

out.println("</CENTER></TD>") ;

out.println ("<TD><CENTER>");

out.println(forecastlLo[i]);

out.println("</CENTER></TD>") ;

out.println("</TR>");

// Close the still-open tags
out.println("</TABLE>") ;
out.println("</CENTER>") ;
out.println("</BODY></HTML>") ;

}

This code exactly generates the weather forecast page as shown in Figure 5-1. It
begins by defining static final variables to use as its content and proceeds to
nest that content among HTML tags. This approach presents a pretty page to the
end user, but it can leave the programmer counting tags and looking for the right
place to put the forgotten </TD>. The approach also has limited maintainability.
Pulling out one HTML tag can result in the same cascading disaster you get when
you pull on a knit sweater’s loose tail. And for the same reason—everything’s
connected. Even a change as simple as decentering the table requires a modifica-
tion in the beginning of doGet () and at the end. And a whimsical change, like
making the extended forecast font bold, requires more than a little concentration.

Weather forecast using HTML generation

The same servlet written using HTML generation is shown in Example 5-5.

Example 5-5. Weather forecast using HTML generation

import java.io.*;

import java.text.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

import weblogic.html.*;
public class WeatherHtmlKona extends HttpServlet {

// Some static final variables to populate the page...
// These would normally come from a database or

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

HTML GENERATION

135

Example 5-5. Weather forecast using HTML generation (continued)

// maybe another servlet that retrieved it as POST data.

static
static
static

static

static

static

public

final
final
final

final

final
final

void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

int currentTemp = 70;

String currentImage = "/images/rainy.gif";

String[] forecastDay = {

String[] forecastImage =

int[] forecastHi

I
~
[ee]
N

int[] forecastlLo = { 58,

res.setContentType ("text/html") ;

// Get a new page
ServletPage page = new ServletPage();

// Set its title
String title = "Sebastopol Weather Forecast";
page.getHead () .addElement (new TitleElement (title));

// Get the body

HtmlContainer body = page.getBody () ;

// Make a table, and add it to the body (even before it's filled)

"Thursday",

"Friday",

"Saturday" };

{ "/images/sunny.gif",
"/images/sunny.gif",

"/images/rainy.gif" };

82, 73 };
65, 48 };

TableElement tab = new TableElement ()
.setCellPadding (0)
.setCellSpacing (0)

.setBorder (1)

.setWidth("60%") ;

body .addElement (new CenteredElement (tab)) ;

// Create the first row

HtmlElement conditions = new StringElement ("Current Conditions")

.asFontElement ("+2")
.asBoldElement ()
.asCenteredElement () ;

HtmlElement image = new ImageElement (currentImage)

HtmlElement temp = new StringElement (currentTemp + "°")

Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

.setwWidth (48)
.setHeight (35)

.asCenteredElement () ;

.asFontElement ("+2")

.asBoldElement ()

Java™ Serviet Programming, eMatter Edition

136 CHAPTER 5: SENDING HTML INFORMATION

Example 5-5. Weather forecast using HTML generation (continued)

.asCenteredElement () ;
tab.addElement (new TableRowElement ()
.addElement (new TableDataElement (conditions))
.addElement (new TableDataElement (image))
.addElement (new TableDataElement (temp)
.setColSpan(2)));

// Create the second row
HtmlElement extended = new StringElement ("Extended Forecast")
.asFontElement ("+1")
.asBoldElement ()
.asCenteredElement () ;
HtmlElement hi = new StringElement ("Hi")
.asFontElement ("+1")
.asBoldElement ()
.asCenteredElement () ;
HtmlElement lo = new StringElement ("Lo")
.asFontElement ("+1")
.asBoldElement ()
.asCenteredElement () ;
tab.addElement (new TableRowElement ()
.addElement (new TableDataElement (extended)
.setColSpan(2))
.addElement (new TableDataElement (hi))
.addElement (new TableDataElement (lo)));

// Create the forecast rows
for (int i = 0; i < forecastDay.length; i++) {
HtmlElement day = new StringElement (" " + forecastDayl[i])
.asFontElement ("+1") ;
HtmlElement daypic = new ImageElement (forecastImagel[i])
.setWidth(48)
.setHeight (35)
.asCenteredElement () ;
HtmlElement dayhi = new StringElement ("" + forecastHi[i])
.asFontElement ("+1")
.asCenteredElement () ;
HtmlElement daylo = new StringElement ("" + forecastLo[i])
.asFontElement ("+1")
.asCenteredElement () ;
tab.addElement (new TableRowElement ()
.addElement (new TableDataElement (day))
.addElement (new TableDataElement (daypic))
.addElement (new TableDataElement (dayhi))
.addElement (new TableDataElement (daylo)));

// Send the page to the response’s output stream

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

HTML GENERATION 187

Example 5-5. Weather forecast using HTML generation (continued)

page.output (res.getOutputStream()) ;

}

The basic structure of this servlet is similar to that of the previous example. The
major difference is that this servlet uses an HITML generation package to create an
object-oriented representation of the web page.

A few things may look strange about this code. The most striking is its use of
method chaining, where several methods are invoked on the same object with
code like the following:

TableElement tab = new TableElement ()
.setCellPadding (0)
.setCellSpacing(0) ;

The whitespace here is irrelevant. The previous code is equivalent to:
TableElement tab = new TableElement () .setCellPadding(0) .setCellSpacing(0) ;

This chaining is possible because each “set” method returns a reference to the
object on which it was invoked—that reference is used to invoke the next “set”
method. This trick comes in handy when using htmlKona.

You may also be wondering why so many objects are declared as HtmlElement
objects but created as StringElement objects or ImageElement objects, as with
the following code:

HtmlElement image = new ImageElement (currentImage)
.setWidth (48)
.setHeight (35)
.asCenteredElement () ;

The answer is that each “as” method returns an object of a different type than the
object on which it was invoked. In the example above, the asCenteredElement ()
method returns a CenteredElement wrapped around the original
ImageElement. For simplicity, each HTML component can be declared to be of
type HtmlElement, which is the superclass of all HTML objects—its actual subclass
type can be changed later with ease.

Now let’s look at how this servlet compares to the previous servlet. This servlet no
longer has code that writes the individual HTML tags, but it replaces that code
with almost as many method invocations. We don’t appear to be saving any
keystrokes. What using HTML generation does do is give you confidence that the
page you constructed is valid. Tags cannot be forgotten or misplaced. The larger
benefit comes from easier maintainability. What if your pointy-haired boss wants

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

138 CHAPTER 5: SENDING HTML INFORMATION

the table leftjustified instead of centered? The change is simple. The following
line:

body .addElement (new CenteredElement (tab)) ;
changes to:
body .addElement (tab) ;

And what if you decide you want the forecast font to be bold? Well, it’s still a lot of
work. For an elegant solution to this problem, we need to look at the next servlet.

Weather forecast using HTML generation creatively

Example 5-6 (the last full weather forecast example) shows another servlet that
generates the weather forecast web page. This servlet demonstrates some of HTML
generation’s potential by reusing objects and subclassing. This technique produces
results similar to what you can achieve with Cascading Style Sheets (CSS), a recent
enhancement to HTML for controlling document appearance.” The major advan-
tage of HTML generation is that, because it operates entirely on the server side, it
can work with all browsers. CSS only started being supported in Microsoft Internet
Explorer 3 and later and Netscape Navigator 4 and later.

Example 5-6. Weather forecast using HTML generation creatively

import java.io.*;

import java.text.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

import weblogic.html.*;

class CurrentStyle extends StringElement {
CurrentStyle(String val) {
super (new StringElement (val)
.asFontElement ("+2")
.asBoldElement ()
.asCenteredElement ()) ;

class ExtendedTitleStyle extends StringElement {
ExtendedTitleStyle(String val) {
super (new StringElement (val)
.asFontElement ("+1")
.asBoldElement ()

* For more information on Cascading Style Sheets, see http://www.w3.0rg/Style/css.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

HTML GENERATION

139

Example 5-6. Weather forecast using HTML generation creatively (continued)

.asCenteredElement ()) ;

class ExtendedDayStyle extends StringElement {
ExtendedDayStyle (String val) {
super (new StringElement (val)
.asFontElement ("+1")) ;

class ExtendedTempStyle extends StringElement {
ExtendedTempStyle (String val) {
super (new StringElement (val)
.asFontElement ("+1")

.asCenteredElement ()) ;

class ImageStyle extends CenteredElement {
ImageStyle (String src) {
super (new ImageElement (src) .setWidth (48) .setHeight (35));

public class WeatherHtmlKonaRevised extends HttpServlet {

static final ImageStyle sunny = new ImageStyle("/images/sunny.gif");
static final ImageStyle rainy = new ImageStyle("/images/rainy.gif");

// Some static final variables to populate the page...

// These would normally come from a database or
// maybe another servlet that retrieved it as POST data.

static
static
static
static
static
static

public

final
final
final
final
final
final

int currentTemp = 70;

ImageStyle currentImage = sunny;

String[] forecastDay = { "Thursday", "Friday", "Saturday" };
ImageStyle[] forecastImage = { sunny, sunny, rainy };

int[] forecastHi = { 82, 82, 73 };

int[] forecastLo = { 58, 65, 48 };

void doGet (HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {

res.setContentType ("text/html") ;

// Get a new page
ServletPage page = new ServletPage();

Java™ Serviet Programming, eMatter Edition

Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

140 CHAPTER 5: SENDING HTML INFORMATION

Example 5-6. Weather forecast using HTML generation creatively (continued)

// Set its title
String title = "Sebastopol Weather Forecast";
page.getHead () .addElement (new TitleElement (title));

// Get the body
HtmlContainer body = page.getBody () ;

// Make a table, and add it to the body (even before it's filled)
TableElement tab = new TableElement ()

.setCellPadding (0)

.setCellSpacing (0)

.setBorder (1)

.setWidth("60%") ;
body .addElement (new CenteredElement (tab)) ;

// Create the first row
HtmlElement conditions = new CurrentStyle("Current Conditions");
HtmlElement image = currentImage;
HtmlElement temp = new CurrentStyle(currentTemp + "°"); // degree symbol
tab.addElement (new TableRowElement ()

.addElement (new TableDataElement (conditions))

.addElement (new TableDataElement (image))

.addElement (new TableDataElement (temp)

.setColSpan(2)));

// Create the second row
HtmlElement extended = new ExtendedTitleStyle ("Extended Forecast");
HtmlElement hi = new ExtendedTitleStyle("Hi");
HtmlElement lo = new ExtendedTitleStyle("Lo");
tab.addElement (new TableRowElement ()
.addElement (new TableDataElement (extended)
.setColSpan(2))
.addElement (new TableDataElement (hi))
.addElement (new TableDataElement (1lo))) ;

// Create the forecast rows
for (int i = 0; i < forecastDay.length; i++) {
HtmlElement day = new ExtendedDayStyle(" " + forecastDayl[i]);
HtmlElement daypic = forecastImagel[il];
HtmlElement dayhi = new ExtendedTempStyle("" + forecastHi[il);
HtmlElement daylo = new ExtendedTempStyle("" + forecastLol[i]);
tab.addElement (new TableRowElement ()
.addElement (new TableDataElement (day))
.addElement (new TableDataElement (daypic))
.addElement (new TableDataElement (dayhi))
.addElement (new TableDataElement (daylo)));

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

HTML GENERATION 141

Example 5-6. Weather forecast using HTML generation creatively (continued)

// Send the page to the response's output stream
page.output (res.getOutputStream()) ;
}
}

This servlet uses five support classes to define custom styles for portions of the
generated web page. For example, CurrentStyle defines the font and posi-
tioning for the elements that display the current conditions, while TmageStyle
defines the size and positioning of the forecast icons. Each support class is a
subclass of HtmlElement (though not always directly) and can thus be treated like
a first-class component on the web page.

Custom styles further abstract the HTML components on the page. What was once
a String surrounded by HTML tags is now a high-level page component. A servlet
can fill these components with content and not worry about exactly how they will
be displayed. Their display is left to the style class. Should it happen that the
appearance needs to be changed, such as when you decide you want the extended
forecast font to be bold, the change can be done with a single modification to the
appropriate style.

Subclassing also proves useful for more mundane tasks. It can be used to define
basic HTML components that, for whatever reason, are not included in the HTML
generation package. For example, htmlKona has no ServletElement class to
represent an embedded <SERVLET> tag. This class could be written similarly to its
AppletElement class by subclassing htmlKona’s ElementWithAttributes class.

Notice how this servlet has changed its representation of the sunny and rainy
images. The previous servlets stored these images as String objects representing
image locations. This servlet, however, creates each one as an ImageStyle object
with an inherent size and width. This means they can be added directly to the
page, simplifying the code in which they are used. It also shows how a servlet can
reuse an HTML component.

For a better demonstration of reuse, imagine the TableElement created by this
servlet being cached and resent in response to every request. This is simple to
accomplish using the techniques demonstrated in Chapter 3, The Servlet Life Cycle.
The table could be on a page surrounded by rotating ad banners, but it can persist
as an object between requests.

But what happens when the current temperature changes? Does the table have to
be entirely regenerated? Not at all. Remember, the table is an object filled with
other objects. All we need to do is replace the object that represents the current

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

142 CHAPTER 5: SENDING HTML INFORMATION

temperature. For our example this can be done with one line of code (note
"° " is the HTML representation of the degree symbol):

tab.setCellAt (0, 2, new CurrentStyle (newTemp + "°"));

The possible creative uses for object-oriented HTML generation go far beyond the
techniques shown in this example. One could imagine a custom-created
BannerElement displayed at the top of all the servlets on a site. It could be just a
predefined ImageElement or a conglomeration of elements. Let your imagina-
tion run wild!

HTML generation and databases

Before we conclude our discussion of HTML generation, there is one more
feature to discuss: its potential close integration with a database. It’s not by coinci-
dence that WebLogic packages htmlKona with its database-centric dbKona and
jdbcKona—the packages work well together. We’ll leave the details to WebLogic’s
web site, but the general idea is that when you execute a query against a database,
the returned result set can be thought of as a formatted table without a graphical
representation. This result set table can be passed to the TableElement
constructor to automatically display the query results in an HTML table on a web
page.

The TableElement constructor also accepts java.util.Dictionary objects (the
superclass of java.util.Hashtable and java.util.Properties). By sub-
classing TableElement, it is possible to have it accept even more types, thus
making it easy to create tables from all different kinds of data. A subclass can also
give special treatment to certain types of data, perhaps converting them into
hyperlinks to other queries.

Status Codes

Until now, our servlet examples have not set HTTP response status codes. We’ve
been taking advantage of the fact that if a servlet doesn’t specifically set the status
code, the server steps in and sets its value to the default 200 “OK” status code.
That’s a useful convenience when we are returning normal successful responses.
However, by using status codes, a servlet can do more with its response. For
example, it can redirect a request or report a problem.

The most common status code numbers are defined as mnemonic constants
(public final static int fields) in the HttpServletResponse class. A few of
these are listed in Table 5-1. The full list is available in Appendix C, HTTP Status
Codes.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

StATUS CODES 143

Table 5-1. HTTP Status Codes

Mnemonic Constant | Code | Default Message Meaning

SC_OK 200 OK The client’s request was
successful, and the server’s
response contains the requested
data. This is the default status
code.

SC_NO_CONTENT 204 No Content The request succeeded, but
there was no new response body
to return. Browsers receiving this
code should retain their current
document view. This is a useful
code for a servlet to use when it
accepts data from a form but
wants the browser view to stay at
the form, as it avoids the “Docu-
ment contains no data” error

message.
SC_MOVED_ 301 Moved Perma- The requested resource has
PERMANENTLY nently permanently moved to a new

location. Future references should
use the new URL in requests. The
new location is given by the
Location header. Most browsers
automatically access the new loca-

tion.
SC_MOVED_ 302 Moved Temporarily | The requested resource has
TEMPORARILY temporarily moved to another

location, but future references
should still use the original URL
to access the resource. The new
location is given by the Location
header. Most browsers automati-
cally access the new location.

SC_UNAUTHORIZED 401 Unauthorized The request lacked proper autho-
rization. Used in conjunction with
the WWW-Authenticate and
Authorization headers.

SC_NOT_FOUND 404 Not Found The requested resource was not
found or is not available.

SC_INTERNAL_ 500 Internal Server An unexpected error occurred
SERVER_ERROR Error inside the server that prevented it
from fulfilling the request.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

144 CHAPTER 5: SENDING HTML INFORMATION

Table 5-1. HTTP Status Codes (continued)

Mnemonic Constant | Code | Default Message Meaning

SC_NOT_ 501 Not Implemented The server does not support the

IMPLEMENTED functionality needed to fulfill the
request.

SC_SERVICE 503 Service Unavailable | The service (server) is temporarily

UNAVAILABLE unavailable but should be restored

in the future. If the server knows
when it will be available again, a
Retry-After header may also be
supplied.

Setting a Status Code

A servlet can use setStatus () to set a response status code:

public void HttpServletResponse.setStatus (int sc)
public void HttpServletResponse.setStatus(int sc, String sm)

Both of these methods set the HTTP status code to the given value. The code can
be specified as a number or with one of the SC_XXX codes defined within Http-
ServletResponse. With the single-argument version of the method, the reason
phrase is set to the default message for the given status code. The two-argument
version allows you to specify an alternate message. Remember, the setStatus ()
method should be called before your servlet returns any of its response body.

If a servlet sets a status code that indicates an error during the handling of the
request, it can call sendError () instead of setStatus ():

public void HttpServletResponse.sendError (int sc)
public void HttpServletResponse.sendError (int sc, String sm)

A server may give the sendError () method different treatment than
setStatus (). When the two-argument version of the method is used, the status
message parameter may be used to set an alternate reason phrase or it may be
used directly in the body of the response, depending on the server’s
implementation.

Improving ViewFile Using Status Codes

So far, we haven’t bothered calling any of these methods to set a response’s status
code. We’ve simply relied on the fact that the status code defaults to SC_OK. But
there are times when a servlet needs to return a response that doesn’t have the
SC_OK status code—when the response does not contain the requested data. As an
example, think back to how the ViewFile servlet in Chapter 4, Retrieving Informa-
tion, handled the FileNotFoundException:

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

HTTP HEADERS 145

// Return the file
try {
ServletUtils.returnFile(file, out);
}
catch (FileNotFoundException e) {
out.println("File not found");

}

Without setting a status code, the best this servlet can do is write out an explana-
tion of the problem, ironically sending the explanation as part of a page that is
supposed to contain the file’s contents. With status codes, however, it can do
exactly what Sun’s FileServlet does: set the response code to SC_NOT_FOUND to
indicate that the requested file was not found and cannot be returned. Here’s the
improved version:

// Return the file
try {
ServletUtils.returnFile(file, out);
}
catch (FileNotFoundException e) {
res.sendError (res.SC_NOT_FOUND) ;
}

The full effect of a sendError () call is server dependent, but for the Java Web
Server this call generates the server’s own “404 Not Found” page, complete with
Duke’s picture (as shown in Figure 5-2). Note that this page is indistinguishable
from every other Java Web Server “404 Not Found” page. The call to sendError ()
also results in a note in the server’s access log that the file could not be found.

HTTP Headers

A servlet can set HTTP headers to provide extra information about its response. As
we said in Chapter 4, a full discussion of all the possible HTTP 1.0 and HTTP 1.1
headers is beyond the scope of this book. Table 5-2 lists the HTTP headers that are
most often set by servlets as a part of a response.

Setting an HTTP Header

The HttpServletResponse class provides a number of methods to assist servlets
in setting HTTP response headers. Use setHeader () to set the value of a header:

public void HttpServletResponse.setHeader (String name, String value)

This method sets the value of the named header as a String. The name is case
insensitive, as it is for all these methods. If the header had already been set, the
new value overwrites the previous one. Headers of all types can be set with this
method.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

146 CHAPTER 5: SENDING HTML INFORMATION

File Edit View Go Communicator

<« » 3 B/ 2 £ S &

Back Forward Reload Home Search Guide Print Security Stop

6" Bookmaks 4 Locator: [iespr//Lesalnest 080 atancia heml /|

=l JavaServer™
JAvA

&‘; Not Found (404)

The file that wou requested could not be found on this server. [f you provided the URL,
| please check to ensure that it is correct. If you followed a hypermedia link, please notify the
| administrator of that server of this error.

7

Figure 5-2. The Java Web Server “404 Not Found” page

Table 5-2. HTTP Response Headers

Header Usage

Cache-Control Specifies any special treatment a caching system should give to
this document. The most common values are no-cache (to indi-
cate this document should not be cached), no-store (to indicate
this document should not be cached or even stored by a proxy
server, usually due to its sensitive contents), and max-
age=seconds (to indicate how long before the document should
be considered stale). This header was introduced in HTTP 1.1.

Pragma The HTTP 1.0 equivalent of Cache-control, with no-cache as
its only possible value.

Connection Used to indicate whether the server is willing to maintain an open
(persistent) connection to the client. If so, its value is set to keep-
alive. If not, its value is set to close. Most web servers handle
this header on behalf of their servlets, automatically setting its
value to keep-alive when a servlet sets its Content-Length
header.

Retry-After Specifies a time when the server can again handle requests, used
with the SC_SERVICE UNAVAILABLE status code. Its value is
either an int that represents the number of seconds or a date
string that represents an actual time.

Expires Specifies a time when the document may change or when its
information will become invalid. It implies that it is unlikely the
document will change before that time.

Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

HTTP HEADERS 147

Table 5-2. HTTP Response Headers (continued)

Header Usage

Location Specifies a new location of a document, usually used with the
status codes SC_CREATED, SC_MOVED_PERMANENTLY, and SC_
MOVED_TEMPORARILY. Its value must be a fully qualified URL
(including “http://").

WwWiW-Authenticate | Specifies the authorization scheme and the realm of authoriza-
tion required by the client to access the requested URL. Used
with the status code SC_UNAUTHORIZED.

Content-Encoding | Specifies the scheme used to encode the response body. Possible
values are gzip (or x-gzip) and compress (or x-compress).

Multiple encodings should be represented as a comma-separated
list in the order in which the encodings were applied to the data.

If you need to specify a time stamp for a header, you can use setDateHeader ():
public void HttpServletResponse.setDateHeader (String name, long date)

This method sets the value of the named header to a particular date and time. The
method accepts the date value as a long that represents the number of millisec-
onds since the epoch (midnight, January 1, 1970 GMT). If the header has already
been set, the new value overwrites the previous one.

Finally, you can use setIntHeader () to specify an integer value for a header:
public void HttpServletResponse.setIntHeader (String name, int value)

This method sets the value of the named header as an int. If the header had
already been set, the new value overwrites the previous one.

The containsHeader () method provides a way to check if a header already
exists:

public boolean HttpServletResponse.containsHeader (String name)
This method returns true if the named header has already been set, false if not.

In addition, the HTML 3.2 specification defines an alternate way to set header
values using the <META HTTP-EQUIV> tag inside the HTML page itself:

<META HTTP-EQUIV="name" CONTENT="value">

This tag must be sent as part of the <HEAD> section of the HTML page. This tech-
nique does not provide any special benefit to servlets; it was developed for use with
static documents, which do not have access to their own headers.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

148 CHAPTER 5: SENDING HTML INFORMATION

Redirecting a Request

One of the useful things a servlet can do using status codes and headers is redirect
a request. This is done by sending instructions for the client to use another URL
in the response. Redirection is generally used when a document moves (to send
the client to the new location), for load balancing (so one URL can distribute the
load to several different machines), or for simple randomization (choosing a desti-
nation at random).

Example 5-7 shows a servlet that performs a random redirect, sending a client to a
random site selected from its site list. Depending on the site list, a servlet like this
could have many uses. As it stands now, it’s just a jump-off point to a selection of
cool servlet sites. With a site list containing advertising images, it can be used to
select the next ad banner.

Example 5-7. Random redirector

import java.io.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class SiteSelector extends HttpServlet ({

Vector sites = new Vector();
Random random = new Random() ;

public void init(ServletConfig config) throws ServletException {
super.init (config) ;
sites.addElement ("http://www.oreilly.com/catalog/jservlet") ;
sites.addElement ("http://www.servlets.com") ;
sites.addElement ("http://jserv.java.sun.com") ;
sites.addElement ("http://www.servletcentral.com") ;

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType ("text/html") ;
PrintWriter out = res.getWriter();

int siteIndex = Math.abs(random.nextInt()) % sites.size();
String site = (String)sites.elementAt (siteIndex) ;

res.setStatus (res.SC_MOVED_TEMPORARILY) ;
res.setHeader ("Location", site);

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

HTTP HEADERS 149

The actual redirection happens in two lines:

res.setStatus (res.SC_MOVED_TEMPORARTLY) ;
res.setHeader ("Location", site);

The first line sets the status code to indicate a redirection is to take place, while
the second line gives the new location. To guarantee they will work, you must call
these methods before you send any output. Remember, the HTTP protocol sends
status codes and headers before the content body. Also, the new site must be given
as an absolute URL (for example, http://sexrver:port/path/file.html). Anything less
than that may confuse the client.

These two lines can be simplified to one using the sendRedirect () convenience
method:

public void HttpServletResponse.sendRedirect (String location) throws
IOException

This method redirects the response to the specified location, automatically setting
the status code and Location header. For our example, the two lines become
simply:

res.sendRedirect (site) ;

Client Pull

Client pull is similar to redirection, with one major difference: the browser actu-
ally displays the content from the first page and waits some specified amount of
time before retrieving and displaying the content from the next page. It’s called
client pull because the client is responsible for pulling the content from the next

page.

Why is this useful? For two reasons. First, the content from the first page can
explain to the client that the requested page has moved before the next page is
automatically loaded. Second, pages can be retrieved in sequence, making it
possible to present a slow-motion page animation.

Client pull information is sent to the client using the Refresh HTTP header. This
header’s value specifies the number of seconds to display the page before pulling
the next one, and it optionally includes a URL string that specifies the URL from
which to pull. If no URL is given, the same URL is used. Here’s a call to
setHeader () that tells the client to reload this same servlet after showing its
current content for three seconds:

setHeader ("Refresh", "3");

And here’s a call that tells the client to display Netscape’s home page after the
three seconds:

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

150 CHAPTER 5: SENDING HTML INFORMATION

setHeader ("Refresh", "3; URL=http://home.netscape.com") ;

Example 5-8 shows a servlet that uses client pull to display the current time,
updated every 10 seconds.

Example 5-8. The current time, kept current
import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ClientPull extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType ("text/plain") ;
PrintWriter out = res.getWriter();

res.setHeader ("Refresh", "10");
out.println(new Date().toString());

This is an example of a text-based animation—we’ll look at graphical animations
in the next chapter. Note that the Refresh header is nonrepeating. It is not a
directive to load the document repeatedly. For this example, however, the
Refresh header is specified on each retrieval, creating a continuous display.

The use of client pull to retrieve a second document is shown in Example 5-9. This
servlet redirects requests for one host to another host, giving an explanation to the
client before the redirection.

Example 5-9. An explained host change

import java.io.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class ClientPullMove extends HttpServlet {
static final String NEW_HOST = "http://www.oreilly.com";
public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType ("text/html") ;

PrintWriter out = res.getWriter();

String newLocation = NEW_HOST + req.getRequestURI();

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

‘WHEN THINGS GO WRONG 151

Example 5-9. An explained host change (continued)

res.setHeader ("Refresh", "10; URL=" + newLocation);

out.println("The requested URI has been moved to a different host.
");
out.println("Its new location is " + newLocation + "
");
out.println("Your browser will take you there in 10 seconds.");

}

This servlet generates the new location from the requested URI, which allows it to
redirect any requests made to the old server. With the Java Web Server, this servlet
could be configured to handle every request, to gradually transition clients to the
new location.

When Things Go Wrong

All right, let’s face it. Sometimes things go wrong. Sometimes the dog bites, and
sometimes the bee stings. There are any number of possible causes: bad parame-
ters, missing resources, and (gasp!) actual bugs. The point here is that a servlet has
to be prepared for problems, both expected and unexpected. There are two
points of concern when things go wrong:

¢ Limiting damage to the server

* Properly informing the client

Because servlets are written in Java, the potential damage they can cause to their
server is greatly minimized. A server can safely embed servlets (even within its
process), just as a web browser can safely embed downloaded applets. This safety is
built on Java’s security features, including the use of protected memory, excep-
tion handling, and security managers. Java’s memory protection guarantees that
servlets cannot accidentally (or intentionally) access the server’s internals. Java’s
exception handling lets a server catch every exception raised by a servlet. Even if a
servlet accidentally divides by zero or calls a method on a null object, the server
can continue to function. Java’s security manager mechanism provides a way for
servers to place untrusted servlets in a sandbox, limiting their abilities and keeping
them from intentionally causing problems.

You should be aware that trusted servlets executing outside a security manager’s
sandbox are given abilities that could potentially cause damage to the server. For
example, a servlet can overwrite the server’s file space or even call System.
exit (). Itis also true that a trusted servlet should never cause damage except by
accident, and it’s hard to accidentally call System.exit (). Still, if it’'s a

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

152 CHAPTER 5: SENDING HTML INFORMATION

concern, even trusted servlets can be (and often are) run inside a fairly lenient but
sanity-checking security manager.

Properly describing a problem to the client cannot be handled by Java language
technology alone. There are many things to consider:

How much to tell the client?
Should the servlet send a generic status code error page, a prose explanation
of the problem, or (in the case of a thrown exception) a detailed stack trace?
What if the servlet is supposed to return nontextual content, such as an
image?

Houw to record the problem?
Should it be saved to a file, written to the server log, sent to the client, or
ignored?

Houw to recover?
Can the same servlet instance handle subsequent requests? Or is the servlet
corrupted, meaning that it needs to be reloaded?

The answers to these questions depend on the servlet and its intended use, and
they should be addressed for each servlet you write on a case-by-case basis. How
you handle errors is up to you and should be based on the level of reliability and
robustness required for your servlet. What we’ll look at next is an overview of the
servlet error-handling mechanisms that you can use to implement whatever policy
you select.

Status Codes

The simplest (and arguably best) way for a servlet to report an error is to use the
sendError () method to set the appropriate 400 series or 500 series status code.
For example, when the servlet is asked to return a file that does not exist, it can
return SC_NOT_FOUND. When it is asked to do something beyond its capabilities, it
can return SC_NOT_IMPLEMENTED. And when the entirely unexpected happens, it
can return SC_INTERNAL_SERVER_ERROR.

By using sendError () to set the status code, a servlet provides the server an
opportunity to give the response special treatment. For example, some servers,
such as the Java Web Server, replace the servlet’s response body with a server-
specific page that explains the error. If the error is such that a servlet ought to
provide its own explanation to the client in the response body, it can set the status
code with setStatus() and send the appropriate body—which could be text
based, a generated image, or whatever is appropriate.

A servlet must be careful to catch and handle any errors before it sends any part of
its response body. As you probably recall (because we’ve mentioned it several

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

‘WHEN THINGS GO WRONG 153

times), HTTP specifies that the status code and HTTP headers must be sent
before the response body. Once you’'ve sent even one character of a response
body, it may be too late to change your status code or your HTTP headers. The
easy way to guarantee you don’t find yourself in this “too late” situation is to send
your content all at once when the servlet is done processing, using an
ByteArrayOutputStream buffer or HTML generation package, as shown earlier
in this chapter.

Logging
Servlets have the ability to write their actions and their errors to a log file using the
log () method:

public void ServletContext.log(String msg)
public void ServletContext.log(Exception e, String msg)

The single-argument method writes the given message to a servlet log, which is
usually an event log file. The two-argument version writes the given message and
exception’s stack trace to a servlet log. Notice the nonstandard placement of the
optional Exception parameter as the first parameter instead of the last for this
method. For both methods, the output format and location of the log are server-
specific.

The GenericServlet class also provides a 1log () method:
public void GenericServlet.log(String msg)

This is another version of the ServletContext method, moved to
GenericServlet for convenience. This method allows a servlet to call simply:

log (msg) ;

to write to the servlet log. Note, however, that GenericServlet does not provide
the two-argument version of log(). The absence of this method is probably an
oversight, to be rectified in a future release. For now, a servlet can perform the
equivalent by calling:

getServletContext () .log(e, msg);

The log () method aids debugging by providing a way to track a servlet’s actions.
It also offers a way to save a complete description of any errors encountered by the
servlet. The description can be the same as the one given to the client, or it can be
more exhaustive and detailed.

Now we can go back and improve ViewFile further, so that it uses log() to
record on the server when requested files do not exist, while returning a simple
“404 Not Found” page to the client:

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

154 CHAPTER 5: SENDING HTML INFORMATION

// Return the file

try {
ServletUtils.returnFile(file, out);

}

catch (FileNotFoundException e) {
log("Could not find file: " + e.getMessage());
res.sendError (res.SC_NOT_FOUND) ;

}

For more complicated errors, a servlet can log the complete stack trace, as shown
here:

// Return the file

try {
ServletUtils.returnFile(file, out);

}

catch (FileNotFoundException e) {
log("Could not find file: " + e.getMessage());
res.sendError (res.SC_NOT_FOUND) ;

}

catch (IOException e) {
getServletContext () .log(e, "Problem sending file");
res.sendError (res.SC._INTERNAL,_SERVER_ ERROR) ;

Reporting

In addition to logging errors and exceptions for the server administrator, during
development it’s often convenient to print a full description of the problem along
with a stack trace. Unfortunately, an exception cannot return its stack trace as a
String-it can only print its stack trace to a PrintStream or PrintWriter. To
retrieve a stack trace as a String, we have to jump through a few hoops. We need
to let the Exception print to a special PrintWriter built around a
ByteArrayOutputStream. That ByteArrayOutputStream can catch the output
and convert it to a String. The com.oreilly.servlet.ServletUtils class has
a getStackTraceAsString () method that does just this:

public static String getStackTraceAsString (Exception e) {
ByteArrayOutputStream bytes = new ByteArrayOutputStream() ;
PrintWriter writer = new PrintWriter (bytes, true);
e.printStackTrace (writer) ;
return bytes.toString() ;

}

Here’s how ViewFile can provide information that includes an IOException
stack trace:

// Return the file
try {

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

‘WHEN THINGS GO WRONG 155

ServletUtils.returnFile(file, out);
}
catch (FileNotFoundException e) {
log("Could not find file: " + e.getMessage());
res.sendError (res.SC_NOT_FOUND) ;
}
catch (IOException e) {
getServletContext () .log(e, "Problem sending file");
res.sendError (res.SC_INTERNAL_SERVER_ERROR,
ServletUtils.getStackTraceAsString(e)) ;
}

The output for a sample exception is shown in Figure 5-3.

00 Internal Server Error - Hetscape

File Edit Yiew Go Commurnicator Help

2 =2 B3 D 2 £ 5 & G
Back Foward Reload Home Seach Guide Frint Securty Stop

J " Bookmarks A Go to: Ihttp:Hlocalhost:SDSDISEwletNiewFiIe.-"inde:-:.html j

500 Internal Server Error

java.in. I0Exzception at com. oredly. serviet ServiletUtils returnFile{ServletUtils javad2) at
ViewFile doGet(ViewFile java:30) at

jawaz serviet hitp. HitpServlet serwvice(HttpServiet java499) at

jawax serviet hitp. HitpServlet serwice(HttpServlet java S88) at

cotn. sun. server. ServletState callSerwce(ServletState java 204) at

com. sun. server, ServletManager, callServietServnice(Serviethlanager.java 9400 at

com. sun. server. hitp, InvokerServlet. sernce({InvokerServlet.java: 101) at

javax servlet hitp. HitpServlet. service(HttpServlet java 585) at

cotn. sun server. ServletState callService(ServletState java 204) at

cotn. sun. server Servletblanager callServietSernce!Serviethlanager java 940) at

cotrn. sun. server webserver. HitpServiceHandler handleRequest{HitpServiceHandler java4 16) at
cotn. sun. server webserver HitpServiceHandler handleRegquest{Http ServiceHandler java 246) at
com. sun. server. Handler Thread run{Handler Thread java:154)

[=F| | Document: Done
Figure 5-3. Keeping the client well informed

Exceptions

As we said before, any exception that is thrown but not caught by a servlet is
caught by its server. How the server handles the exception is server-dependent: it
may pass the client the message and the stack trace, or it may not. It may automati-

cally log the exception, or it may not. It may even call destroy () on the servlet
and reload it, or it may not.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

156 CHAPTER 5: SENDING HTML INFORMATION

Servlets designed and developed to run with a particular server can optimize for
that server’s behavior. A servlet designed to interoperate across several servers
cannot expect any particular exception handling on the part of the server. If such
a servlet requires special exception handling, it must catch its own exceptions and
handle them accordingly.

There are some types of exceptions a servlet has no choice but to catch itself. A
servlet can propagate to its server only those exceptions that subclass
IOException, ServletException, or RuntimeException. The reason has to do
with method signatures. The service() method of Servlet declares in its
throws clause that it throws IOException and ServletException exceptions.
For it (or the doGet () and doPost () methods it calls) to throw and not catch
anything else causes a compile time error. The RuntimeException is a special
case exception that never needs to be declared in a throws clause. A common
example is a Nul1lPointerException.

The init() and destroy() methods have their own signatures as well. The
init () method declares that it throws only ServletException exceptions, and
destroy () declares that it throws no exceptions.

ServletException is a subclass of java.lang.Exception that is specific to serv-
lets—the class is defined in the javax.servlet package. This exception is thrown
to indicate a general servlet problem. It has the same constructors as java.lang.
Exception: one that takes no arguments and one that takes a single message
string. Servers catching this exception may handle it any way they see fit.

The javax.servlet package defines one subclass of ServletException,
UnavailableException, although you can, of course, add your own. This excep-
tion indicates a servlet is unavailable, either temporarily or permanently. Servers
(services) that catch an UnavailableException are expected to behave as
described in the Servlet API documentation:

Servlets may report this exception at any time, and the network service running
the servlet should behave appropriately. There are two types of unavailability, and
sophisticated services will deal with these differently:

Permanent unavailability. The servlet will not be able to handle client requests until
some administrative action is taken to correct a servlet problem. For example, the
servlet might be misconfigured, or the state of the servlet may be corrupted. Well
written servlets will log both the error and the corrective action which an adminis-
trator must perform to let the servlet become available.

Temporary unavailability. The servlet cannot handle requests at this moment due to
a system-wide problem. For example, a third-tier server might not be accessible, or
there may be insufficient memory or disk storage to handle requests. The problem
may be self-correcting, such as those due to excessive load, or corrective action
may need to be taken by an administrator.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

‘WHEN THINGS GO WRONG 157

Network services may safely treat both types of exceptions as “permanent,” but
good treatment of temporary unavailability leads to more robust network services.
Specifically, requests to the servlet might be blocked (or otherwise deferred) for a
servlet-suggested amount of time, rather than being rejected until the service itself
restarts.

UnavailableException has two constructors:

javax.servlet.UnavailableException (Servlet servlet, String msg)
javax.servlet.UnavailableException (int seconds, Servlet servlet, String msg)

The two-argument constructor creates a new exception that indicates the given
servlet is permanently unavailable, with an explanation given by msg. The three-
argument version creates a new exception that indicates the given servlet is tempo-
rarily unavailable, with an explanation given by msg. The duration of its
unavailability is given by seconds. This time is only an estimate. If no estimate can
be made, a nonpositive value may be used. Notice the nonstandard placement of
the optional seconds parameter as the first parameter instead of the last. This
may be changed in an upcoming release. UnavailableException provides the
isPermanent (), getServlet(), and getUnavailableSeconds () methods to
retrieve information about an exception.

Knowing When No One’s Listening

Sometimes clients hang up on servlets. Sure, it’s rude, but it happens. Sometimes
the client makes a mistake and goes to the wrong page. Sometimes the servlet
takes too long to respond. Remember, all the while a servlet is preparing its
response, the user is being tempted by the browser’s big, glowing Stop button that
is just begging to be pushed. You may be wondering, just what happens to the
servlet once that button is pushed?

Unfortunately, a servlet is not given any immediate indication that the user has
pressed the Stop button—there is no interrupt that tells it to stop processing. The
servlet discovers the client has stopped the request only when it tries to send
output to the nonexistent client, at which point an error condition occurs.

A servlet that sends information using a ServletOutputStream sees an
IOException when it tries to write output. For servers that buffer their output, the
IOException is thrown when the buffer fills up and its contents are flushed.

Because an IOException may be thrown any time a servlet tries to output, a well-
written servlet frees its resources in a f£inally block. (The finally block is an
optional part of a try/catch/finally construct. It comes after zero or more
catch blocks, and its code is executed once regardless of how the code in the try
block executes.) Here’s a version of the returnFile() method from the View-

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

158 CHAPTER 5: SENDING HTML INFORMATION

File servlet that uses a finally block to guarantee the closure of its
FileInputStream:

void returnFile(String filename, OutputStream out)
throws FileNotFoundException, IOException {

FileInputStream fis = null;
try {

fis = new FileInputStream(filename) ;

byte[] buf = new byte[4 * 1024]; // 4K buffer

int bytesRead;

while ((bytesRead = fis.read(buf)) != -1) {

out.write(buf, 0, bytesRead);

}
finally {
if (fis != null) fis.close():

}

The addition of a f£inally block does not change the fact that this method propa-
gates all exceptions to its caller, but it does guarantee that, before that
propagation, the method gets a chance to close the open FileInputStream.

A servlet sending character data using a PrintWriter doesn’t get an
TOException when it tries to write output, because the methods of PrintWriter
never throw exceptions. Instead, a servlet that sends character data has to call the
checkError () method of PrintWriter. This method flushes the output and
returns a boolean that indicates if there was a problem writing to the underlying
OutputStream. It returns true if the client has stopped the request.

A long-running servlet should call checkError () regularly to determine if it can
halt processing early. If there hasn’t been any output since the last check, a servlet
can send filler content. For example:

out.println("<H2>Here's the solution for your differential equation:</H2>");
if (out.checkError()) return;

// Preliminary calculation here
out.print (" "); // filler content, extra whitespace is ignored in HTML
if (out.checkError()) return;

// Additional calculation here

It’s important to note that a server is not required to throw an TOException or set
the error flag of the PrinWriter after the client disconnects. A server may elect to
let the response run to completion with its output ignored. Generally this does not
cause a problem, but it does mean that a servlet running inside such a server
should always have a set end point and should not be written to continuously loop
until the user hits Stop.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

In this chapter:
* Images
* Compressed Content

* Server Push

Sending Multimedia
Content

Until now, every servlet we’ve written has returned a standard HTML page. The
web consists of more than HTML, though, so in this chapter we’ll look at some of
the more interesting things a servlet can return. We begin with a look at why you’d
want to return different MIME types and how to do it. The most common use of a
different MIME type is for returning an image graphic generated by a servlet (or
even by an applet embedded inside the servlet!). The chapter also explores when
and how to send a compressed response and examines using multipart responses
to implement server push.

Images

People are visually oriented—they like to see, not just read, their information.
Consequently, it’s nearly impossible to find a web site that doesn’t use images in
some way, and those you do find tend to look unprofessional. To cite the well-
worn cliche (translated into programmer-speak), “An image is worth a thousand
words.”

Luckily, it’s relatively simple for a servlet to send an image as its response. In fact,
we’ve already seen a servlet that does just this: the ViewFile servlet from
Chapter 4, Retrieving Information. As you may recall, this servlet can return any file
under the server’s document root. When the file happens to be an image file, it
detects that fact with the getMimeType () method and sets its response’s content
type with setContentType () before sending the raw bytes to the client.

This technique requires that we already have the needed image files saved on disk,
which isn’t always the case. Often, a servlet must generate or manipulate an image
before sending it to the client. Imagine, for example, a web page that contains an
image of an analog clock that displays the current time. Sure, someone could save

159
Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

160 CHAPTER 6: SENDING MULTIMEDIA CONTENT

720 images (60 minutes times 12 hours) to disk and use a servlet to dispatch the
appropriate one. But that someone isn’t me, and it shouldn’t be you. Instead, the
wise servlet programmer writes a servlet that dynamically generates the image of
the clock face and its hands—or as a variant, a servlet that loads an image of the
clock face and adds just the hands. And, of course, the frugal programmer also has
the servlet cache the image (for about a minute) to save server cycles.

There are many other reasons you might want a servlet to return an image. By
generating images, a servlet can display things such as an up-to-the-minute stock
chart, the current score for a baseball game (complete with icons representing the
runners on base), or a graphical representation of the Cokes left in the Coke
machine. By manipulating preexisting images, a servlet can do even more. It can
draw on top of them, change their color, size, or appearance, or combine several
images into one.

Image Generation

Suppose you have an image as raw pixel data that you want to send to someone.
How do you do it? Let’s assume it’s a true-color, 24-bit image (3 bytes per pixel)
and that it’s 100 pixels tall and 100 pixels wide. You could take the obvious
approach and send it one pixel at a time, in a stream of 30,000 bytes. But is that
enough? How does the receiver know what to do with the 30,000 bytes he
received? The answer is that he doesn’t. You also need to say that you are sending
raw, true-color pixel values, that you're beginning in the upper left corner, that
you're sending row by row, and that each row is 100 pixels wide. Yikes! And what if
you decide to send fewer bytes by using compression? You have to say what kind of
compression you are using, so the receiver can decompress the image. Suddenly
this has become a complicated problem.

Fortunately this is a problem that has been solved, and solved several different
ways. Each image format (GIF, JPEG, TIFF, etc.) represents one solution. Each
image format defines a standard way to encode an image so that it can later be
decoded for viewing or manipulation. Each encoding technique has certain advan-
tages and limitations. For example, the compression used for GIF encoding excels
at handling computer-generated images, but the GIF format is limited to just 256
colors. The compression used for JPEG encoding, on the other hand, works best
on photo-realistic images that contain millions of colors, but it works so well
because it uses “lossy” compression that can blur the photo’s details.

Understanding image encoding helps you understand how servlets handle images.
A servlet like ViewFile can return a preexisting image by sending its encoded
representation unmodified to the client—the browser decodes the image for
viewing. But a servlet that generates or modifies an image must construct an

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

IMAGES

161

internal representation of that image, manipulate it, and then encode it, before
sending it to the client.

A “Hello World” image

Example 6-1 gives a simple example of a servlet that generates and returns a GIF

image

. The graphic says “Hello World!”, as shown in Figure 6-1.

Example 6-1. Hello World graphics

import
import
import
import
import
public

publ

Se

Fr
Gr

java.io.*;
java.awt.*;
javax.servlet.*;
javax.servlet.http.*;

Acme.JPM. Encoders.GifEncoder;

class HelloWorldGraphics extends HttpServlet {

ic void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

rvletOutputStream out = res.getOutputStream(); // binary output!

ame frame = null;
aphics g = null;

try {

}
fi.

// Create an unshown frame
frame = new Frame() ;
frame.addNotify () ;

// Get a graphics region, using the Frame
Image image = frame.createImage (400, 60);
g = image.getGraphics();

// Draw "Hello World!" to the off-screen graphics context
g.setFont (new Font ("Serif", Font.ITALIC, 48));
g.drawString ("Hello World!", 10, 50);

// Encode the off-screen image into a GIF and send it to the client
res.setContentType ("image/gif") ;

GifEncoder encoder = new GifEncoder (image, out);

encoder.encode () ;

nally {

// Clean up resources

if (g != null) g.dispose();

if (frame != null) frame.removeNotify();

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

162 CHAPTER 6: SENDING MULTIMEDIA CONTENT

Example 6-1. Hello World graphics (continued)
}

IF image 400x60 pixels - Netscape

File Edit “iew Go Communicator Help

| 4 » A D a2 £ o &£ @3
i Back Fonward Reload Home Search Guide Frnt Securty Stop

T w! " Bookmarks \k_ Location: Ihttp: /flocalhost: 80807 zarviet/Helow orldG raphics j
By

'@| | Document; Dore

Figure 6-1. Hello World graphics

Although this servlet uses the java.awt package, it never actually displays a
window on the server’s display. Nor does it display a window on the client’s display.
It performs all its work in an off-screen graphics context and lets the browser
display the image. The strategy is as follows: create an off-screen image, get its
graphics context, draw to the graphics context, and then encode the resulting
image for transmission to the client.

Obtaining an off-screen image involves jumping through several hoops. In Java, an
image is represented by the java.awt.Image class. Unfortunately, an Image
object cannot be instantiated directly through a constructor. It must be obtained
through a factory method like the createImage () method of Component or the
getImage () method of Toolkit. Because we’re creating a new image, we use
createImage (). Note that before a component can create an image, its native
peer must already exist. Thus, to create our Image we must create a Frame, create
the frame’s peer with a call to addNotify (), and then use the frame to create our
Image.” Once we have an image, we draw onto it using its graphics context, which
can be retrieved with a call to the getGraphics() method of Image. In this
example, we just draw a simple string.

After drawing into the graphics context, we call setContentType() to set the
MIME type to "image/gif" since we’re going to use the GIF encoding. For the
examples in this chapter, we use a GIF encoder written by Jef Poskanzer. It’s well

* For web servers running on Unix systems, the frame’s native peer has to be created inside an X server.
Thus, for optimal performance, make sure the DISPLAY environment variable (which specifies the X
server to use) is unset or set to a local X server. Also make sure the web server has been granted access
to the X server, which may require the use of xhost or xauth.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

IMAGES 163

written and freely available with source from Attp://www.acme.com.” To encode the
image, we create a GifEncoder object, passing it the image object and the
ServletOutputStream for the servlet. When we call encode() on the Gif
Encoder object, the image is encoded and sent to the client.

After sending the image, the servlet does what all well-behaved servlets should do:
it releases its graphical resources. These would be reclaimed automatically during
garbage collection, but releasing them immediately helps on systems with limited
resources. The code to release the resources is placed in a £inally block to guar-
antee its execution, even when the servlet throws an exception.

A dynamically generated chart

Now let’s look at a servlet that generates a more interesting image. Example 6-2
creates a bar chart that compares apples to oranges, with regard to their annual
consumption. Figure 6-2 shows the results. There’s little need for this chart to be
dynamically generated, but it lets us get the point across without too much code.
Picture in your mind’s eye, if you will, that the servlet is charting up-to-the-minute
stock values or the server’s recent load.

Example 6-2. A chart comparing apples and oranges

import java.awt.*;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import Acme.JPM.Encoders.GifEncoder;

import javachart.chart.*; // from Visual Engineering

public class SimpleChart extends HttpServlet ({

static final int WIDTH = 450;
static final int HEIGHT = 320;

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException , IOException {

ServletOutputStream out = res.getOutputStream() ;

Frame frame = null;

* Note that the LZW compression algorithm used for GIF encoding is protected by Unisys and IBM pat-
ents which, according to the Free Software Foundation, make it impossible to have free software that
generates the GIF format. For more information, see http://www.fsf.org/philosophy/gif. html. Of course,
a servlet can encode its Image into any image format. For web content, JPEG exists as the most likely
alternative to GIF. There are JPEG encoders in JDK 1.2 and commercial products such as the JIMI
product (Java Image Management Interface), available from Activated Intelligence at hitp://www.
activated.com.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

164 CHAPTER 6: SENDING MULTIMEDIA CONTENT

Example 6-2. A chart comparing apples and oranges (continued)

Graphics g = null;

try {
// Create a simple chart
BarChart chart = new BarChart ("Apples and Oranges");

// Give it a title
chart.getBackground () .setTitleFont (new Font ("Serif", Font.PLAIN, 24));
chart.getBackground () .setTitleString ("Comparing Apples and Oranges");

// Show, place, and customize its legend
chart.setLegendVisible (true) ;

chart.getLegend () .setlLl1X(0.4); // normalized from lower left
chart.getLegend () .setLl1lY(0.75); // normalized from lower left
chart.getLegend () .setIconHeight (0.04) ;

chart.getLegend () .setIconWidth(0.04) ;

) .setIconGap(0.02) ;

) .setVerticalLayout (false) ;

(
(
chart .getLegend (
(

chart .getLegend

// Give it its data and labels
double[] appleData = {950, 1005, 1210, 1165, 1255};
chart.addDataSet ("Apples", appleData) ;

double[] orangeData = {1435, 1650, 1555, 1440, 1595};
chart.addDataSet ("Oranges", orangeData) ;

String[] labels = {"1993", "1994", "1995", "1996", "1997"};
chart.getXAxis () .addLabels (labels) ;

// Color apples red and oranges orange
chart.getDatasets () [0] .getGec () .setFillColor (Color.red) ;
chart.getDatasets () [1] .getGc () .setFillColor (Color.orange) ;

// Name the axes
chart.getXaAxis () .setTitleString("Year") ;
chart.getYAxis () .setTitleString ("Tons Consumed") ;

// Size it appropriately
chart.resize (WIDTH, HEIGHT) ;

// Create an unshown frame
frame = new Frame() ;
frame.addNotify () ;

// Get a graphics region of appropriate size, using the Frame
Image image = frame.createImage (WIDTH, HEIGHT) ;
g = image.getGraphics () ;

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

IMAGES 165

Example 6-2. A chart comparing apples and oranges (continued)

// Ask the chart to draw itself to the off screen graphics context
chart.drawGraph(g) ;

// Encode and return what it painted
res.setContentType ("image/gif") ;
GifEncoder encoder = new GifEncoder (image, out);
encoder.encode () ;
}
finally {
// Clean up resources
if (g != null) g.dispose();
if (frame != null) frame.removeNotify();

| File Edit View Go Communicator

2 = I 2 £ S &£

Back Forwsrd Reload Home Search Guide Print Security Stop

< Bookmarks & Location: [heep: //localhost: 6080/sezvist /SimpleChazt /||
Comparing Apples and Oranges

Tons Consutned
20007

B Apples Oranges

1993 1994 1995 1996 1997
Year

Figure 6-2. A chart comparing apples and oranges

The basics are the same: create an off-screen image and get its graphics context,
draw to the graphics context, and then encode the image for transmission to the

Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

166 CHAPTER 6: SENDING MULTIMEDIA CONTENT

client. The difference is that this servlet constructs a BarChart object to do the
drawing. There are more than a dozen charting packages available in Java. You
can find several showcased at hitp://www.gamelan.com. The BarChart class from
this example came from Visual Engineering’s JavaChart package, available at Attp:/
Jwww.ve.com/javachart. It’s a commercial product, but for readers of this book they
have granted free permission to use the portion of the API presented above. The
JavaChart package also includes a set of free chart-generating applets that we will
use later in this chapter.

Image Composition

So far, we’ve drawn our graphics onto empty images. In this section, we discuss
how to take preexisting images and either draw on top of them or combine them
to make conglomerate images. We also examine error handling in servlets that
return images.

Drawing over an image

Sometimes it’s useful for a servlet to draw on top of an existing image. A good
example is a building locator servlet that knows where every employee sits. When
queried for a specific employee, it can draw a big red dot over that employee’s
office.

One deceptively obvious technique for drawing over a preexisting image is to
retrieve the Image with Toolkit.getDefaultToolkit () .
getImage (imagename), get its graphics context with a call to the getGraphics ()
method of Image, and then use the returned graphics context to draw on top of
the image. Unfortunately, it isn’t quite that easy. The reason is that you cannot use
getGraphics () unless the image was created with the createImage() method
of Component. With the AWT, you always need to have a native peer in the back-
ground doing the actual graphics rendering.

Here’s what you have to do instead: retrieve the preexisting image via the
Toolkit.getDefaultToolkit () .getImage (imagename) method and then tell
it to draw itself into another graphics context created with the createImage ()
method of Component, as shown in the previous two examples. Now you can use
that graphics context to draw on top of the original image.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

IMAGES 167

Example 6-3 clarifies this technique with an example. It’s a servlet that writes
“CONFIDENTIAL” over every image it returns. The image name is passed to the
servlet as extra path information. Some example output is shown in Figure 6-3.

Example 6-3. Drawing over an image to mark it confidential

import java.awt.*;

import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;

import Acme.JPM.Encoders.GifEncoder;
public class Confidentializer extends HttpServlet {

Frame frame = null;
Graphics g = null;

public void init(ServletConfig config) throws ServletException {
super.init (config) ;
// Construct a reusable unshown frame
frame = new Frame() ;
frame.addNotify () ;

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
ServletOutputStream out = res.getOutputStream() ;

try {
// Get the image location from the path info
String source = req.getPathTranslated();
if (source == null) {
throw new ServletException ("Extra path information " +
"must point to an image");

// Load the image (from bytes to an Image object)
MediaTracker mt = new MediaTracker (frame); // frame acts as ImageObserver
Image image = Toolkit.getDefaultToolkit () .getImage (source) ;
mt .addImage (image, 0);
try {
mt.waitForAll () ;
}
catch (InterruptedException e) {
getServletContext () .log(e, "Interrupted while loading image") ;
throw new ServletException (e.getMessage()) ;

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

168 CHAPTER 6: SENDING MULTIMEDIA CONTENT

Example 6-3. Drawing over an image to mark it confidential (continued)

// Construct a matching-size off screen graphics context
int w = image.getWidth (frame) ;

int h = image.getHeight (frame) ;

Image offscreen = frame.createImage(w, h);

g = offscreen.getGraphics () ;

// Draw the image to the off-screen graphics context
g.drawImage (image, 0, 0, frame);

// Write CONFIDENTIAL over its top
g.setFont (new Font ("Monospaced", Font.BOLD | Font.ITALIC, 30));
g.drawString ("CONFIDENTIAL", 10, 30);

// Encode the off-screen graphics into a GIF and send it to the client
res.setContentType ("image/gif") ;
GifEncoder encoder = new GifEncoder (offscreen, out);
encoder.encode () ;
}
finally {
// Clean up resources
if (g != null) g.dispose();

public void destroy () {
// Clean up resources
if (frame !'= null) frame.removeNotify();

}

You can see that this servlet performs each step exactly as described above, along
with some additional housekeeping. The servlet creates its unshown Frame in its
init () method. Creating the Frame once and reusing it is an optimization previ-
ously left out for the sake of clarity. For each request, the servlet begins by
retrieving the name of the preexisting image from the extra path information.
Then it retrieves a reference to the image with the getImage() method of
Toolkit and physically loads it into memory with the help of a MediaTracker.
Normally it’s fine for an image to load asynchronously with its partial results
painted as it loads, but in this case we paint the image just once and need to guar-
antee it’s fully loaded beforehand. Then the servlet gets the width and height of
the loaded image and creates an off-screen image to match. Finally, the big
moment: the loaded image is drawn on top of the newly constructed, empty
image. After that it’s old hat. The servlet writes its big “CONFIDENTIAL” and
encodes the image for transmission.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

IMAGES 169

#+ GIF image 250x328 pixels - Netzcape
File Edit Wiew Go Communicator Help

2 o A4 &% a2 £ 2 & N
Back Forward Reload Home Search Guide Frint Securty Stop
J'Bnokmarks Qﬁ. Location:Ihttp:.n’.n’loc:alhost:8EIBEI.n’servIetx’EnnfidentiaIizer;’i&p.gif j

Servlet Programming

Jacom fmcer

CRELLY" it Widiizne Crmfmet

=] | Document: Done

Figure 6-3. Drawing over an image to mark it confidential

Notice how this servlet handles error conditions by throwing exceptions and
logging any errors that may interest the server administrator. When returning
images, it’s difficult to do much more. After all, a textual description doesn’t help
when a servlet is referenced in an tag. This approach allows the server to do
whatever it deems appropriate.

Combining images

A servlet can also combine images into one conglomerate image. Using this ability,
a building locator servlet could display an employee’s smiling face over her office,
instead of a red dot. The technique used for combining images is similar to the
one we used to draw over the top of an image: the appropriate images are loaded,
they’re drawn onto a properly created Image object, and that image is encoded for
transmission.

Example 6-4 shows how to do this for a servlet that displays a hit count as a
sequence of individual number images combined into one large image. Its output

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

170 CHAPTER 6: SENDING MULTIMEDIA CONTENT

can be seen in Figure 6-4. The number images it uses are available at http://www.
geocities.com/SiliconValley/6742/, along with several other styles.

Example 6-4. Combining images to form a graphical counter

import java.awt.*;

import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;

import Acme.JPM.Encoders.GifEncoder;
public class GraphicalCounter extends HttpServlet {

public static final String DIR = "/images/odometer";
public static final String COUNT = "314159";

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
ServletOutputStream out = res.getOutputStream() ;

Frame frame = null;
Graphics g = null;

try {
// Get the count to display, must be sole value in the raw query string
// Or use the default
String count = (String)req.getQueryString();
if (count == null) count = COUNT;

int countlen = count.length() ;
Image images[] = new Image[countlen];

for (int i = 0; i < countlen; i++) {
String imageSrc =
reqg.getRealPath (DIR + "/" + count.charAt(i) + ".GIF");
images[i] = Toolkit.getDefaultToolkit () .getImage (imageSrc) ;

// Create an unshown Frame
frame = new Frame() ;
frame.addNotify () ;

// Load the images

MediaTracker mt = new MediaTracker (frame) ;

for (int i = 0; i < countlen; i++) {
mt.addImage (images[i], 1);

}

try {

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

IMAGES 171

Example 6-4. Combining images to form a graphical counter (continued)

mt.waitForAll () ;

}

catch (InterruptedException e) {
getServletContext () .log(e, "Interrupted while loading image") ;
throw new ServletException (e.getMessage()) ;

// Check for problems loading the images
if (mt.isErrorAny()) {
// We had a problem, find which image(s)
StringBuffer problemChars = new StringBuffer();
for (int i = 0; 1 < countlen; i++) {
if (mt.isErrorID(i)) {
problemChars.append (count .charAt (1)) ;

}

throw new ServletException (
"Coult not load an image for these characters: " +
problemChars. toString()) ;

// Get the cumulative size of the images
int width = 0;
int height = 0;
for (int i = 0; i < countlen; i++) {
width += images[i].getWidth (frame) ;
height = Math.max(height, images[i].getHeight (frame));

// Get a graphics region to match, using the Frame
Image image = frame.createImage (width, height);
g = image.getGraphics () ;

// Draw the images
0;
for (int i = 0; i < countlen; i++) {

int xindex

g.drawImage (images[i], xindex, 0, frame);
xindex += images[i].getWidth (frame) ;

// Encode and return the composite
res.setContentType ("image/gif") ;
GifEncoder encoder = new GifEncoder (image, out);
encoder.encode () ;

}

finally {
// Clean up resources
if (g != null) g.dispose();

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

172 CHAPTER 6: SENDING MULTIMEDIA CONTENT

Example 6-4. Combining images to form a graphical counter (continued)

if (frame != null) frame.removeNotify () ;

File Edit “iew Go Communicator

< »w 3 D} 2 £ S &

Back Forward Reload Home Search Guide Print Security Stop

¢ Bookmarks 4 Location:

Figure 6-4. Combining images to form a graphical counter

This servlet receives the number to display by reading its raw query string. For
each number in the count, it retrieves and loads the corresponding number image
from the directory given by DIR. (DIR is always under the server’s document root.
It’s given as a virtual path and translated dynamically to a real path.) Then it calcu-
lates the combined width and the maximum height of all these images and
constructs an off-screen image to match. The servlet draws each number image
into this off-screen image in turn from left to right. Finally, it encodes the image
for transmission.

To be of practical use, this servlet must be called by another servlet that knows the
hit count to be displayed. For example, it could be called by a server-side include
servlet embedded in a page, using syntax like the following:

This servlet handles error conditions in the same way as the previous servlet, by
throwing a ServletException and leaving it to the server to behave
appropriately.

Image Effects

We’ve seen how servlets can create and combine images. In this section, we look at
how servlets can also perform special effects on images. For example, a servlet can
reduce the transmission time for an image by scaling down its size before transmis-
sion. Or it can add some special shading to an image to make it resemble a
pressable button. As an example, let’s look at how a servlet can convert a color
image to grayscale.

Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

IMAGES 173

Converting an image to grayscale

Example 6-5 shows a servlet that converts an image to grayscale before returning
it. The servlet performs this effect without ever actually creating an off-screen
graphics context. Instead, it creates the image using a special ImageFilter.
(We’d show you before and after images, but they wouldn’t look very convincing
in a black-and-white book.)

Example 6-5. An image effect converting an image to grayscale

import java.awt.*;

import java.awt.image.*;
import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;

import Acme.JPM.Encoders. *;
public class DeColorize extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType ("image/gif") ;
ServletOutputStream out = res.getOutputStream() ;

// Get the image location from the path info
String source = reqg.getPathTranslated();
if (source == null) {
throw new ServletException ("Extra path information " +
"must point to an image");

// Construct an unshown frame
// No addNotify () because its peer isn't needed
Frame frame = new Frame();

// Load the image
Image image = Toolkit.getDefaultToolkit () .getImage (source) ;
MediaTracker mt = new MediaTracker (frame) ;
mt .addImage (image, 0);
try {
mt.waitForAll () ;
}
catch (InterruptedException e) {
getServletContext () .log(e, "Interrupted while loading image") ;
throw new ServletException (e.getMessage());

// Get the size of the image

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

174 CHAPTER 6: SENDING MULTIMEDIA CONTENT

Example 6-5. An image effect converting an image to grayscale (continued)

int width = image.getWidth (frame) ;
int height = image.getHeight (frame) ;

// Create an image to match, run through a filter
Image filtered = frame.createImage (
new FilteredImageSource (image.getSource(),
new GrayscaleImageFilter()));

// Encode and return the filtered image
GifEncoder encoder = new GifEncoder (filtered, out);
encoder.encode () ;

}

Much of the code for this servlet matches that of the Confidentializer
example. The major difference is shown here:

// Create an image to match, run through a filter
Image filtered = frame.createImage (
new FilteredImageSource (image.getSource(),
new GrayscaleImageFilter()));

This servlet doesn’t use the createImage (int, int) method of Component we’ve
used up until now. It takes advantage of the createImage (ImageProducer)
method of Component instead. The servlet creates an image producer with a
FilteredImageSource that passes the image through an
GrayscaleImageFilter. This filter converts each color pixel to its grayscale
counterpart. Thus, the image is converted to grayscale as it is being created. The
code for the GrayscaleImageFilter is shown in Example 6-6.

Example 6-6. The GrayscalelmageFilter class
import java.awt.*;
import java.awt.image.*;

public class GrayscaleImageFilter extends RGBImageFilter {

public GrayscaleImageFilter() {
canFilterIndexColorModel = true;

// Convert color pixels to grayscale
// The algorithm matches the NTSC specification
public int filterRGB(int x, int y, int pixel) {

// Get the average RGB intensity
int red = (pixel & 0x00££0000) >> 16;
int green = (pixel & 0x0000££00) >> 8;

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

IMAGES 175

Example 6-6. The GrayscalelmageFilter class (continued)

int blue = pixel & 0x000000ff;
int luma = (int) (0.299 * red + 0.587 * green + 0.114 * blue);

// Return the luma value as the value for each RGB component
// Note: Alpha (transparency) is always set to max (not transparent)
return (0xff << 24) | (luma << 16) | (luma << 8) | luma;

}

For each value in the colormap, this filter receives a pixel value and returns a new
filtered pixel value. By setting the canFilterIndexColorModel variable to true,
we signify that this filter can operate on the colormap and not on individual pixel
values. The pixel value is given as a 32-bit int, where the first octet represents the
alpha (transparency) value, the second octet the intensity of red, the third octet
the intensity of green, and the fourth octet the intensity of blue. To convert a pixel
value to grayscale, the red, green, and blue intensities must be set to identical
values. We could average the red, green, and blue values and use that average
value for each color intensity. That would convert the image to grayscale. Taking
into account how people actually perceive color (and other factors), however,
demands a weighted average. The 0.299, 0.587, 0.114 weighting used here matches
that used by the National Television Systems Committee for black-and-white televi-
sion. For more information, see Charles A. Poynton’s book A Technical Introduction
to Digital Video (Wiley) and the web site http://www.color.org.

Caching a converted image

The process of creating and encoding an image can be expensive, taking both
time and server CPU cycles. Caching encoded images can often improve perfor-
mance dramatically. Instead of doing all the work for every request, the results can
be saved and resent for subsequent requests. The clock face idea that we
mentioned earlier is a perfect example. The clock image needs to be created at
most once per minute. Any other requests during that minute can be sent the
same image. A chart for vote tabulation is another example. It can be created once
and changed only as new votes come in.

For our example, let’s give the DeColorize servlet the ability to cache the gray-
scale images it returns. The servlet life cycle makes this extremely simple. Our new
DeColorize servlet saves each converted image as a byte array stored in a
Hashtable keyed by the image name. First, our servlet needs to create a
Hashtable instance variable. This must be declared outside doGet ():

Hashtable gifs = new Hashtable();

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

176 CHAPTER 6: SENDING MULTIMEDIA CONTENT

To fill this hashtable, we need to capture the encoded graphics. So, instead of
giving the GifEncoder the ServletOutputStream, we give it a
ByteArrayOutputStream Then, when we encode the image with encode (), the
encoded image is stored in the ByteArrayOutputStream Finally, we store the
captured bytes in the hashtable and then write them to the
ServletOutputStream to send the image to the client. Here’s the new code to
encode, store, and return the filtered image:

// Encode, store, and return the filtered image
ByteArrayOutputStream baos = new ByteArrayOutputStream() ;
GifEncoder encoder = new GifEncoder (filtered, baos);
encoder.encode () ;

gifs.put (source, baos);

baos.writeTo (out) ;

This fills the hashtable with encoded images keyed by image name. Now, earlier in
the servlet, we can go directly to the cache when asked to return a previously
encoded image. This code should go immediately after the code executed if
source==null:

// Short circuit if it's been done before

if (gifs.containsKey (source)) {
ByteArrayOutputStream baos = (ByteArrayOutputStream) gifs.get (source);
baos.writeTo (out) ;
return;

}

With these modifications, any image found in the cache is returned quickly,
directly from memory.

Of course, caching multiple images tends to consume large amounts of memory.
To cache a single image is rarely a problem, but a servlet such as this should use
some method for cleaning house. For example, it could cache only the 10 most
recently requested images.

Image Effects in Filter Chains

We haven’t talked about filter chains yet in this chapter, but they are actually quite
useful for performing image effects. If you recall, a servlet in a filter chain receives
content on its input stream and sends a filtered version of that content out its
output stream. In previous examples, we have always filtered textual HTML. Now
we can see how to filter images in a servlet chain.

Performing special effects on an image works the same whether it happens in a
filter chain or in a standard servlet. The only difference is that instead of loading
the image from a file, a chained servlet receives its image as an encoded stream of
bytes. Example 6-7 shows how a servlet receives an encoded stream of bytes and

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

IMAGES

177

creates an Image from them. In this case, the servlet shrinks the image to one-
quarter its original size.

Example 6-7. Shrinking an image using a filter chain

import
import
import
import
import

import

public

java.awt.*;
java.awt.image. *;
java.io.*;
javax.servlet.*;
javax.servlet.http.*;

Acme.JPM.Encoders. *;

class ShrinkFilter extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {

ServletOutputStream out = res.getOutputStream() ;

String contentType = req.getContentType() ;

if

/!

(contentType == null || !contentType.startsWith("image")) {

throw new ServletException ("Incoming content type must be \"image/*\"");

Fetch the bytes of the incoming image

DataInputStream in = new DataInputStream(

new BufferedInputStream (
req.getInputStream())) ;

ByteArrayOutputStream baos = new ByteArrayOutputStream() ;
byte[] buf = new byte[4 * 1024]; // 4K buffer

int len;

while ((len = in.read(buf, 0, buf.length)) != -1) {
baos.write(buf, 0, len);

}

// Create an image out of them

Image image = Toolkit.getDefaultToolkit ()

//
//

.createImage (baos.toByteArray()) ;

Construct an unshown frame
No addNotify() since it's peer isn't needed

Frame frame = new Frame();

/7

Load the image, so we can get a true width and height

MediaTracker mt = new MediaTracker (frame) ;

mt.

addImage (image, 0);

try {
mt.waitForAll () ;

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

178 CHAPTER 6: SENDING MULTIMEDIA CONTENT

Example 6-7. Shrinking an image using a filter chain (continued)

catch (InterruptedException e) {
getServletContext () .log(e, "Interrupted while loading image") ;
throw new ServletException (e.getMessage());

// Shrink the image to half its width and half its height.

// An improved version of this servlet would receive the desired

// ratios in its init parameters.

// We could also resize using ReplicateScaleFilter or

// AreaAveragingScaleFilter.

Image shrunk = image.getScaledInstance (image.getWidth (frame) / 2,
image.getHeight (frame) / 2,
image.SCALE_DEFAULT) ;

// Encode and return the shrunken image
res.setContentType ("image/gif") ;

GifEncoder encoder = new GifEncoder (shrunk, out);
encoder.encode () ;

}

The createImage (byte[]) method of Toolkit creates an Image from an array
of bytes. The method determines the image format automatically, as long as the
image is in one of the formats understood and decodable by the AWT (typically
GIF, JPEG, and XBM, although it’s possible to add a custom content handler).

The servlet uses the createImage() method to create an Image out of the
incoming bytes. Because the createImage() method doesn’t accept an input
stream, the servlet first captures the bytes with a ByteArrayOutputStream After
creating the Image, the servlet loads it in order to get its true width and height.
Then the servlet gets a scaled instance that is half as wide and half as tall, using the
getScaledInstance () method of Image. Last, it encodes the image and sends it
out its output stream.

Why use a filter chain to perform an image effect instead of a standard servlet?
The main reason is for increased flexibility. For example, a server can be told that
all the large classified images in one subdirectory should be run through a
“shrink” filter and a “confidential tag” filter. Closer to reality, the server can be
told that any image on the web site should be served in its “shrunken” form if the
request URI begins with "/1lite". Another possibility is to tell the server that all
images of type image/xlm need to be run through a basic filter that converts the
XBM image into a GIF.

Are you wondering why we aren’t taking advantage of object serialization to pass
our image from servlet to servlet? The reason is simple: images are not Serializ-

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

IMAGES 179

able. If a servlet can guarantee that the next link in the chain is another servlet
and not the client, though, then it can pass the Image more efficiently using tech-
niques described in Chapter 11, Interservlet Communication.

An Image of an Embedded Applet

Now let’s take a look at one of the more creative ways a servlet can generate an
image: by taking a picture of an embedded applet. Applets are small Java programs
that can be sent to a client for execution inside a web page—they’ve been used to
create everything from animations to interactive programs to static charts. Here
we’re going to twist their use a bit. Instead of having the server send a program to
the client for execution, we have it send just a picture of the program executing
on the server. Now we’ll admit that replacing an executing applet with an image is
hardly a fair trade, but it does has its advantages. For a static, noninteractive
applet, it’s often more efficient to send its image than to send the code and data
needed to have the client create the image itself. Plus, the image displays even for
clients whose browsers don’t support Java or who may have Java support disabled.

An image of a simple applet

Example 6-8 shows an applet that may look familiar to you. It’s the SecondApplet
example taken from David Flanagan’s Java Examples in a Nuishell book (O’Reilly).
Figure 6-b shows its “fancy graphics.”

Example 6-8. A simple applet

import java.applet.*;
import java.awt.*;

public class Second2pplet extends Applet {
static final String message = "Hello World";
private Font font;

// One-time initialization for the applet
// Note: no constructor defined.
public void init() {
font = new Font ("Helvetica", Font.BOLD, 48);

// Draw the applet whenever necessary. Do some fancy graphics.
public void paint (Graphics g) {

// The pink oval

g.setColor (Color.pink) ;

g.filloval (10, 10, 330, 100);

// The red outline. Java doesn't support wide lines, so we
// try to simulate a 4-pixel-wide line by drawing four ovals.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

180 CHAPTER 6: SENDING MULTIMEDIA CONTENT

Example 6-8. A simple applet (continued)

g.setColor (Color.red) ;

g.drawOval (10,10, 330, 100);
g.drawOval (9, 9, 332, 102);
g.drawOval (8, 8, 334, 104);
g.drawOval (7, 7, 336, 106);

// The text

g.setColor (Color.black) ;
g.setFont (font) ;

g.drawString (message, 40, 75);

E%_%Applel Yiewer: SecondApplet.class H=] E3
Applet

Hello World

Applet started.

Figure 6-5. The simple applet’s fancy graphics

This applet can be embedded the traditional way inside an HTML file with the
<APPLET> tag:

<APPLET CODE="SecondApplet.class" WIDTH=500 HEIGHT=200>
</APPLET>

An <APPLET> tag can include a CODEBASE parameter that tells the client where to
fetch the given class. Because the previous <APPLET> tag does not provide a
CODEBASE parameter, the SecondApplet.class file is assumed to be in the same direc-
tory as the HTML file.

This applet can also be embedded inside HTML content returned by a servlet:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class SecondAppletHtml extends HttpServlet {
public void doGet (HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {
res.setContentType ("text/html") ;

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

IMAGES 181

PrintWriter out = res.getWriter();

/] ...

out.println("<APPLET CODE=SecondApplet.class CODEBASE=/ " +
"WIDTH=500 HEIGHT=200>") ;

out.println("</APPLET>") ;

/] ...

}

Notice that here the CODEBASE parameter must be supplied. If it’s not given, the
code base is erroneously assumed to be /servlet or whatever other virtual path was
used to launch the servlet.

Now let’s look at a servlet that embeds SecondApplet inside itself and sends a
picture of the applet to the client. The code is shown in Example 6-9 and its
output in Figure 6-6. In order to embed an applet, a servlet needs a special Frame
subclass that implements AppletContext and AppletStub. For these examples,
we can use a modified version of Jef Poskanzer’s Acme.MainFrame class. In addi-
tion to some minor bug fixes, the class has been modified to not call its own
show () method (to keep it from actually displaying during execution) and to call
the applet’s init () and start () methods synchronously instead of in a separate
thread (to guarantee the applet is ready when we call its paint () method). A copy
of Acme.MainFrameModified is available with the book examples as described in
the Preface.

Example 6-9. Embedding SecondApplet

import java.applet.*;

import java.awt.*;

import java.awt.image.*;
import java.io.*;

import java.net.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

import Acme.JPM.Encoders.GifEncoder;
import Acme.MainFrameModified;

public class SecondAppletViewer extends HttpServlet ({
static final int WIDTH = 450;
static final int HEIGHT = 320;

static final String APPLETNAME = "SecondApplet";

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

182 CHAPTER 6: SENDING MULTIMEDIA CONTENT

Example 6-9. Embedding SecondApplet (continued)

ServletOutputStream out = res.getOutputStream() ;

MainFrameModified frame
Graphics g = null;

null;
Applet applet = null;

try {
// Load the SecondApplet
// Must be in the standard CLASSPATH
try {
applet = (Applet) Class.forName (APPLETNAME) .newInstance() ;
}
catch (Exception e) {
throw new ServletException("Could not load applet:" + e);

// Prepare the applet arguments
String args[] = new String[1l];
args[0] = "barebones=true"; // run without a menu bar

// Put the applet in its frame
// addNotify() is called by MainFrameModified
frame = new MainFrameModified(applet, args, WIDTH, HEIGHT) ;

// Get a graphics region to match the applet size, using the Frame
Image image = frame.createImage (WIDTH, HEIGHT) ;
g = image.getGraphics() ;

// Ask the applet to paint itself
applet.validate() ;
applet.paint(g);

// Encode and return what it painted
res.setContentType ("image/gif") ;
GifEncoder encoder = new GifEncoder (image, out);
encoder.encode () ;
}
finally {
// Clean up resources
if (applet != null) {
applet.stop() ;
applet.destroy() ;
applet.removeAll () ;
}
if (g !'= null) {
g.dispose() ;
}

if (frame != null) {

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

IMAGES 183

Example 6-9. Embedding SecondApplet (continued)

frame.removeAll () ;
frame.removeNotify () ;
frame.dispose() ;

GIF image 450x320 pixels - Hetscape

File Edit “iew Go Communicator Help

2 = A 4 a2 £ o &£ @ N
Back Fomward Feload Heome Search Guide Frint Secuitp Stop
wt " Bookmarks \g& Location: Ihttp:r'a"localhost:SDSDHsewleh’Secondﬂ.pplet\a’iewel j

Hello World

<
E| |Document: Done

Figure 6-6. Another view of the simple applet’s fancy graphics

This servlet begins by dynamically loading the SecondApplet class and creating a
single instance of it. For SecondApplet to be found, it must be somewhere in the
server’s standard CLASSPATH—which for the Java Web Server by default excludes
the server. root/servlets directory. Then the servlet prepares the applet’s argu-
ments. These are passed to the MainFrameModified constructor as an array of
"name=value" strings. SecondApplet takes no parameters, so this step would
seem to be unnecessary. However, MainFrameModified piggy-backs into the argu-
ment list its own "barebones" argument, which we set to true to indicate it
should display the applet without any special decoration. Finally, the servlet
creates an appropriately sized off-screen graphics context, has the applet paint
itself using that context, and encodes the image for transmission to the client.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

184 CHAPTER 6: SENDING MULTIMEDIA CONTENT

A generic applet viewer

We can build on this example to develop a generic servlet capable of embedding
and taking a picture of any applet. It can accept as request parameters the applet
name, its width and height, and its parameters. Example 6-10 contains the code.

Example 6-10. A generic applet viewer

import java.applet.*;

import java.awt.*;

import java.awt.image.*;
import java.io.*;

import java.net.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

import Acme.JPM.Encoders.GifEncoder;
import Acme.MainFrameModified;

public class AppletViewer extends HttpServlet {

static final int WIDTH = 450;
static final int HEIGHT = 320;

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
ServletOutputStream out = res.getOutputStream() ;

MainFrameModified frame
Graphics g = null;
Applet applet = null;

null;

try {
String appletParam = req.getParameter ("applet");
String widthParam = req.getParameter ("width") ;
String heightParam = req.getParameter ("height");

// Load the given applet
// Must be in the standard CLASSPATH
try {
applet = (Applet) Class.forName (appletParam) .newInstance() ;
}
catch (Exception e) {
throw new ServletException("Could not load applet:" + e);

// Convert width/height to integers
// Use default values if they weren't given or there's a problem

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

IMAGES 185

Example 6-10. A generic applet viewer (continued)

int width = WIDTH;

int height = HEIGHT;

try { width = Integer.parselnt (widthParam); }

catch (NumberFormatException e) { /* leave as default */ }
try { height = Integer.parseInt (heightParam); }

catch (NumberFormatException e) { /* leave as default */ }

// Get a list of the other parameters in a format MainFrame understands
// (Specifically, an array of "name=value" Strings)

Vector temp = new Vector();

Enumeration names = req.getParameterNames () ;

while (names.hasMoreElements()) {
String name = (String) names.nextElement () ;
if (name != "applet" && name != "width" && name != "height")
temp.addElement (name + "=" + req.getParameter (name)) ;
}
temp.addElement ("barebones=true"); // run without a menu bar

// Now from Vector to array

int size = temp.size();

String args[] = new Stringl[size];

for (int i = 0; i < size; i++) {
args[i] = (String) temp.elementAt(i);

// Put the applet in its frame
// addNotify() is called by MainFrameModified
frame = new MainFrameModified(applet, args, width, height);

// Get a graphics region to match the applet size, using the Frame
Image image = frame.createImage (width, height);
g = image.getGraphics() ;

// Ask the applet to paint its children and itself
applet.validate() ;

paintContainerChildren(g, applet);

applet.paint(g) ;

// Encode and return what it painted
res.setContentType ("image/gif") ;
GifEncoder encoder = new GifEncoder (image, out);
encoder.encode () ;
}
finally {
// Clean up resources
if (applet != null) {
applet.stop();
applet.destroy() ;
applet.removeaAll () ;

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

186 CHAPTER 6: SENDING MULTIMEDIA CONTENT

Example 6-10. A generic applet viewer (continued)

}

if (g !'= null) {
g.dispose() ;

}

if (frame != null) {
frame.removeAll () ;
frame.removeNotify () ;
frame.dispose() ;

// Recursively paints all the Components of a Container.
// It's different from paintComponents (Graphics) because
// paintComponents (Graphics) does not paint to the passed-in
// Graphics! It uses it only to get the clipping region.
void paintContainerChildren(Graphics g, Container c) {
Component[] children = c.getComponents/() ;
for (int 1 = 0; i < children.length; i++) {
if (children[i] != null) {
children[i] .paintAll(g); // get lightweights too
if (children[i] instanceof Container) {
paintContainerChildren(g, (Container)children[il]);

}

There are two major differences between this servlet and SecondAppletViewer:
how it handles parameters and how it paints the applet’s components. All the
details, from the applet’s name to its parameters, are passed to this servlet via
request parameters. It receives the name of the applet as the "applet" parameter
and its width and height as the "width" and "height" parameters; it passes all
the other parameters on to the applet itself.

The painting is more radically different. This servlet uses a custom-built
paintContainerChildren () utility method to paint all the components of the
applet. For the servlet to call applet.paintComponents(g) is not sufficient
because paintComponents (g) does not paint to the passed-in Graphics object!
Instead, it uses the Graphics parameter only to get a clipping region. This servlet
also uses paintAll () instead of paint (), so that it correctly paints lightweight
components. Note that for this technique to work well, the embedded applet has
to fully paint itself during its first paint () invocation. It can’t display a splash
screen or perform a lazy load of its images.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

IMAGES 187

The AppletViewer servlet can replace SecondAppletViewer. Just invoke it with
the URL #itp://server:port/servilet/AppletViewer 2applet=SecondApplet. It can also
replace our SimpleChart example. Remember when we said JavaChart includes a
set of free chart-generating applets? We can use AppletViewer to embed any of
these free applets and send the resulting chart as an image to the client. To dupli-
cate the SimpleChart example requires this lengthy URL (split into separate lines
for readability, probably so long that many servers won’t be able to handle it):

http://server:port/servliet/AppletViewer?
applet=javachart.applet.columnApp&
titleFont=TimesRoman%2c24%2c0&
titleString=Comparing+Apples+And+Oranges&
xAxisTitle=Year&

yAxisTitle=Tons+Consumed&
xAxisLabels=1993%2c1994%2c1995%2¢c1996%2c1997&
datasetOyValues=950%2c1005%2c1210%2c1165%2c1255&
datasetlyValues=1435%2c1650%2c1555%2c1440%2c1595&
dataset0Color=red&

datasetOName=Apples&

datasetlColor=orange&

dataset1Name=Oranges&

legendOn=yes&

legendHorizontal=true&

legendl1X=0.4&

legendl1Y=0.75&

iconHeight=0.04&

iconwidth=0.04&

iconGap=0.02&

xAxisOptions=gridOoff&

yAxisOptions=gridOff

The graph generated by this URL looks identical to Figure 6-2 shown earlier (with
the one difference that the applet version contains a blue dot in the lower right
corner that can be removed with the purchase of a JavaChart license).

Advantages and disadvantages

We think you’ll agree that embedding an applet in a servlet has a certain coolness
factor. But is it ever practical? Let’s look over its advantages and disadvantages.
First, the advantages:

It can save money.
Hey, the JavaChart applets are free, and Visual Engineering assured us that
this use doesn’t violate their license!

It can save download time.
Why send all the code and data needed to make an image when you can send
the image itself, especially when the image can be pregenerated?

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

188 CHAPTER 6: SENDING MULTIMEDIA CONTENT

It works for every client.
It works even when the client browser doesn’t support Java or has Java
disabled.

However, on the downside:

1t requares extra resources on the server.
Specifically it consumes CPU power and memory.

1t works well for only a few applets.
Specifically it works best on static, noninteractive applets that fully paint them-
selves with their first paint () invocation.

Compressed Content

The java.util.zip package was introduced in JDK 1.1. This package contains
classes that support reading and writing the GZIP and ZIP compression formats.
Although these classes were added to support Java Archive (JAR) files, they also
provide a convenient, standard way for a servlet to send compressed content.

Compressed content doesn’t look any different to the end user because it’s
decompressed by the browser before it’s displayed. Yet, while it looks the same, it
can improve the end user’s experience by reducing the time required to down-
load the content from the server. For heavily compressable content such as
HTML, compression can reduce transmission times by an order of magnitude.
Quite a trick! Just bear in mind that to compress content dynamically forces the
server to perform extra work, so any speed-up in transmission time has to be
weighed against slower server performance.

By now you should be familiar with the idea that a servlet can send a Content-
Type header as part of its response to tell the client the type of information being
returned. To send compressed content, a servlet must also send a Content-
Encoding header to tell the client the scheme by which the content has been
encoded. Under the HTTP 1.0 specification, the possible encoding schemes are
gzip (or x-gzip) and compress (or x-compress) for GZIP and ZIP compres-
sion formats, respectively.

Not all clients understand the gzip and compress encodings. To tell the server
which encoding schemes it understands, a client may send an Accept-Encoding
header that specifies acceptable encoding schemes as a comma-separated list. Most
browsers do not yet provide this header—even those that do support compressed
encodings. For now, a servlet has to decide that without the header it won’t send
compressed content, or it has to examine the User-Agent header to see if the
browser is one that supports compression. Of the current popular browsers, only
Netscape Navigator 3 and 4 on Unix and Microsoft Internet Explorer 4 on

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

COMPRESSED CONTENT 189

Windows support GZIP encoding, and none support ZIP encoding. For more
information (and a regular expression to identify GZIP-enabled browsers), see
hittp://www.kulturbox. de/perl/test/content-encoding-gzip/3.

Although negotiating which compression format to use can involve a fair amount
of logic, actually sending the compressed content could hardly be simpler. The
servlet just wraps its standard ServletOutputStream with a GZIPOutputStream
or ZipOutputStream Be sure to call out.close() when your servlet is done
writing output, so that the appropriate trailer for the compression format is
written. Ah, the wonders of Javal

Example 6-11 shows the ViewFile servlet from Chapter 4 rewritten to send
compressed content whenever possible. We’d show you a screen shot, but there’s
nothing new to see. As we said before, an end user cannot tell that the server sent
compressed content to the browser—except perhaps with reduced download
times.

Example 6-11. Sending compressed content

import java.io.*;

import java.util.*;

import java.util.zip.*;
import javax.servlet.*;
import javax.servlet.http.*;

import com.oreilly.servlet.ServletUtils;
public class ViewFileCompress extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

OutputStream out = null;

// Select the appropriate content encoding based on the

// client's Accept-Encoding header. Choose GZIP if the header

// includes "gzip". Choose ZIP if the header includes "compress".
// Choose no compression otherwise.

String encodings = req.getHeader ("Accept-Encoding") ;

if (encodings != null && encodings.indexOf ("gzip") != -1) {
// Go with GZIP
res.setHeader ("Content-Encoding", "x-gzip");

out = new GZIPOutputStream(res.getOutputStream()) ;
}

else if (encodings != null && encodings.indexOf ("compress") != -1) {
// Go with ZIP
res.setHeader ("Content-Encoding", "xX-compress");

out = new ZipOutputStream(res.getOutputStream()) ;

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

190 CHAPTER 6: SENDING MULTIMEDIA CONTENT

Example 6-11. Sending compressed content (continued)

((zipOutputStream)out) .putNextEntry (new ZipEntry ("dummy name")) ;
}
else {

// No compression

out = res.getOutputStream() ;

}
res.setHeader ("Vary", "Accept-Encoding");

// Get the file to view
String file = req.getPathTranslated() ;

// No file, nothing to view
if (file == null) {
res.sendError (res.SC_FORBIDDEN) ;

return;

// Get and set the type of the file
String contentType = getServletContext () .getMimeType (file);
res.setContentType (contentType) ;

// Return the file

try {
ServletUtils.returnFile(file, out);
}
catch (FileNotFoundException e) {
res.sendError (res.SC_NOT_FOUND) ;
return;
}
catch (IOException e) {
getServletContext () .log(e, "Problem sending file");
res.sendError (res.SC_INTERNAL_SERVER_ERROR,
ServletUtils.getStackTraceAsString(e)) ;

// Write the compression trailer and close the output stream

out.close();

}

The servlet begins by declaring a null OutputStream and then setting this
OutputStream to a GZIPOutputStream, ZipOutputStream, or ServletOutput-
Stream, depending on the received Accept-Encoding header. As it selects which
output stream to use, the servlet sets the Content-Encoding header accordingly.
When sending compressed content, this header must be set for the client to run
the appropriate decompression algorithm. The servlet also sets the Vary header to
the value Accept-Encoding to be polite and indicate to the client that the servlet

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SERVER PUSH 191

varies its output depending on the Accept-Encoding header. Most clients ignore
this header.

After this early logic, the servlet can treat the output stream as just another
OutputStream. It could wrap the stream with a PrintStream or PrintWriter, or
it could pass it to a GifEncoder. But, no matter what it does, the servlet has to be
sure to call out.close() when it’s finished sending content. This call writes the
appropriate trailer to the compressed stream.

There is some content that should not be compressed. For example, GIF and
JPEG images are already compressed as part of their encoding, so there’s no
benefit in compressing them again. An improved version of the
FileViewCompressed servlet would detect when it’s returning an image and not
bother with an attempt at further compression. Another improvement would be to
rewrite this servlet as a filter—compressing whatever content is piped through it.

Server Push

Up until now, every page returned by a servlet has been just that: a page. Always
one page with one content type. But why think in such limited terms? Why not
have a servlet return several pages, each with a different content type, all in
response to the same request? It may be hard to imagine—and sound even harder
to implement—but it’s actually quite easy using a technique known as server push.

It’s called server push because the server sends, or pushes, a sequence of response
pages to the client. Compare this to the client pull technique discussed in the last
chapter, where it’s left to the client to get, or pull, each page from the server.
Although the results of each technique are similar to the end user—the appear-
ance of a sequence of pages—the implementation details and the appropriate uses
of the two techniques are quite different.

With server push, the socket connection between the client and the server remains
open until the last page has been sent. This gives the server the ability to send
page updates quickly and to control exactly when those updates are sent. As such,
server push is ideal for pages that need frequent updates (such as rudimentary
animations) or pages that need server-controlled but somewhat infrequent
updates (such as live status updates). Note, however, that server push is not yet
supported by Microsoft Internet Explorer, and extended use should be avoided, as
it has been found to be harmful to the server’s available socket count.

With client pull, the socket connection is broken after every page, so responsi-
bility for page updates falls to the client. The client uses the Refresh header value
sent by the server to determine when to perform its update, so client pull is the

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

192 CHAPTER 6: SENDING MULTIMEDIA CONTENT

best choice for pages that require infrequent updates or have updates at known
intervals.

Server push can come in handy for limited-length animations and for real-time
status updates. For example, consider a servlet that could push the four latest satel-
lite weather maps, creating a rudimentary animation. If you recall the
PrimeSearcher servlet from Chapter 3, The Servlet Life Cycle, think about how we
could use server push to notify a limited number of clients immediately as the
servlet finds each new prime.

Example 6-12 shows a servlet that uses server push to display a countdown to a
rocket launch. It begins by sending a series of pages that count down from 10 to 1.
Every page replaces the previous page. When the countdown reaches 0, the servlet
sends a picture of a launch. It uses the com.oreilly.servlet.MultipartRe-
sponse utility class (shown in Example 6-13) to manage the server push details.

Example 6-12. Countdown to a rocket launch

import java.awt.*;

import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;

import com.oreilly.servlet.MultipartResponse;
import com.oreilly.servlet.ServletUtils;

public class Countdown extends HttpServlet {
static final String LAUNCH = "/images/launch.gif";

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
ServletOutputStream out = res.getOutputStream(); // some binary output

// Prepare a multipart response
MultipartResponse multi = new MultipartResponse (res) ;

// First send a countdown
for (int i = 10; i > 0; i--) {
multi.startResponse ("text/plain");
out.println(i + "...");
multi.endResponse () ;
try { Thread.sleep(1000); } catch (InterruptedException e) { }

// Then send the launch image
multi.startResponse ("image/gif");
try {

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SERVER PUSH 193

Example 6-12. Countdown to a rocket launch (continued)

ServletUtils.returnFile(req.getRealPath (LAUNCH), out);

}
catch (FileNotFoundException e) {
throw new ServletException("Could not find file: " + e.getMessage());

// Don't forget to end the multipart response
multi.finish();

}

The MultipartResponse class hides most of the nasty, dirty details involved in
using server push. Feel free to use it in your own servlets. It is easy to use, as you
can see from the previous example.

First, create a new MultipartResponse object, passing it the servlet’s response
object. MultipartResponse uses the response object to fetch the servlet’s output
stream and to set the response’s content type. Then, for each page of content,
begin by calling startResponse () and passing in the content type for that page.
Send the content for the page by writing to the output stream as usual. A call to
endResponse () ends the page and flushes the content, so the client can see it. At
this point, you can add a call to sleep(), or some other kind of delay, until the
next page is ready for sending. The call to endResponse () is optional, as the
startResponse () method knows whether the previous response was ended and
ends it if necessary. You should still call endResponse () if there’s going to be a
delay between the time one response ends and the next begins. This lets the client
display the latest response while it is waiting for the next one. Finally, after all the
response pages have been sent, a call to the finish() method finishes the multi-
part response and sends a code telling the client there will be no more responses.

Example 6-13 contains the code for the MultipartResponse class.

Example 6-13. The MultipartResponse class

public class MultipartResponse {

HttpServletResponse res;
ServletOutputStream out;
boolean endedLastResponse = true;

public MultipartResponse (HttpServletResponse response) throws IOException {
// Save the response object and output stream
res = response;
out = res.getOutputStream() ;

// Set things up

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

194 CHAPTER 6: SENDING MULTIMEDIA CONTENT

Example 6-13. The MultipartResponse class (continued)

res.setContentType ("multipart/x-mixed-replace;boundary=End") ;
out.println();
out.println("--End") ;

public void startResponse (String contentType) throws IOException {
// End the last response if necessary
if (!endedLastResponse) {
endResponse () ;
}
// Start the next one
out.println("Content-Type: " + contentType) ;
out.println();
endedLastResponse = false;

public void endResponse() throws IOException {
// End the last response, and flush so the client sees the content
out.println();
out.println("--End") ;
out.flush();
endedLastResponse = true;

public void finish() throws IOException {
out.println("--End--");
out.flush();

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

In this chapter:

* User Authorization
* Hidden Form Fields
* URL Rewriting

* Persistent Cookies

* The Session Tracking
API

Session Tracking

HTTP is a stateless protocol: it provides no way for a server to recognize that a
sequence of requests are all from the same client. Privacy advocates may consider
this a feature, but it causes problems because many web applications aren’t state-
less. The shopping cart application is a classic example—a client can put items in
his virtual cart, accumulating them until he checks out several page requests later.
Other examples include sites that offer stock brokerage services or interactive data
mining.

The HTTP state problem can best be understood if you imagine an online chat
forum where you are the guest of honor. Picture dozens of chat users, all
conversing with you at the same time. They are asking you questions, responding
to your questions, and generally making you wish you had taken that typing course
back in high school. Now imagine that when each participant writes to you, the
chat forum doesn’t tell you who’s speaking! All you see is a bunch of questions and
statements mixed in with each other. In this kind of forum, the best you can do is
hold simple conversations, perhaps answering direct questions. If you try to do
anything more, such as ask someone a question in return, you won’t necessarily
know when the answer comes back. This is exactly the HTTP state problem. The
HTTP server sees only a series of requests—it needs extra help to know exactly
who’s making a request.”

The solution, as you may have already guessed, is for a client to introduce itself as
it makes each request. Each client needs to provide a unique identifier that lets
the server identify it, or it needs to give some information that the server can use

* If you’re wondering why the HTTP server can’t identify the client by the connecting machine’s IP ad-
dress, the answer is that the reported IP address could possibly be the address of a proxy server or the
address of a server machine that hosts multiple users.

195
Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

196 CHAPTER 7: SESSION TRACKING

to properly handle the request. To use the chat example, a participant has to
begin each of his sentences with something like “Hi, I'm Jason, and ...” or “Hi, I
just asked about your age, and ...”. As you’ll see in this chapter, there are several
ways for HTTP clients to send this introductory information with each request.

The first half of the chapter explores the traditional session-tracking techniques
used by CGI developers: user authorization, hidden form fields, URL rewriting,
and persistent cookies. The second half of the chapter demonstrates the built-in
support for session tracking in Version 2.0 of the Servlet APIL. This support is built
on top of the traditional techniques and it greatly simplifies the task of session
tracking in your servlets.

User Authorization

One way to perform session tracking is to leverage the information that comes
with user authorization. We discussed user authorization back in Chapter 4,
Retrieving Information, but, in case you’ve forgotten, it occurs when a web server
restricts access to some of its resources to only those clients that log in using a
recognized username and password. After the client logs in, the username is avail-
able to a servlet through getRemoteUser ().

We can use the username to track a client session. Once a user has logged in, the
browser remembers her username and resends the name and password as the user
views new pages on the site. A servlet can identify the user through her username
and thereby track her session. For example, if the user adds an item to her virtual
shopping cart, that fact can be remembered (in a shared class or external data-
base, perhaps) and used later by another servlet when the user goes to the check-
out page.

For example, a servlet that utilizes user authorization might add an item to a user’s
shopping cart with code like the following:

String name = req.getRemoteUser () ;
if (name == null) {

// Explain that the server administrator should protect this page
}
else {

String[] items = req.getParameterValues ("item");

if (items != null) {

for (int i = 0; i < items.length; i++) {
addItemToCart (name, items[i]);

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

HIDDEN FORM FIELDS 197

Another servlet can then retrieve the items from a user’s cart with code like this:

String name = req.getRemoteUser () ;
if (name == null) {
// Explain that the server administrator should protect this page
}
else {
String[] items = getItemsFromCart (name) ;

}

The biggest advantage of using user authorization to perform session tracking is
that it’s easy to implement. Simply tell the server to protect a set of pages, and use
getRemoteUser () to identify each client. Another advantage is that the tech-
nique works even when the user accesses your site from different machines. It also
works even if the user strays from your site or exits her browser before coming
back.

The biggest disadvantage of user authorization is that it requires each user to
register for an account and then log in each time she starts visiting your site. Most
users will tolerate registering and logging in as a necessary evil when they are
accessing sensitive information, but it’s overkill for simple session tracking. We
clearly need a better approach to support anonymous session tracking. Another
small problem with user authorization is that a user cannot simultaneously main-
tain more than one session at the same site.

Hidden Form Fields

One way to support anonymous session tracking is to use hidden form fields. As
the name implies, these are fields added to an HTML form that are not displayed
in the client’s browser. They are sent back to the server when the form that
contains them is submitted. You include hidden form fields with HTML like this:

<FORM ACTION="/servlet/MovieFinder" METHOD="POST">

<INPUT TYPE=hidden NAME="zip" VALUE="94040">
<INPUT TYPE=hidden NAME="level" VALUE="expert">

</FORM>
In a sense, hidden form fields define constant variables for a form. To a servlet

receiving a submitted form, there is no difference between a hidden field and a
visible field.

With hidden form fields, we can rewrite our shopping cart servlets so that users
can shop anonymously until check-out time. Example 7-1 demonstrates the tech-
nique with a servlet that displays the user’s shopping cart contents and lets the

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

198 CHAPTER 7: SESSION TRACKING

user choose to add more items or check out. An example screen for a bookworm
is shown in Figure 7-1.

Example 7-1. Session tracking using hidden form fields

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ShoppingCartViewerHidden extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType ("text/html") ;
PrintWriter out = res.getWriter();

out.println ("<HEAD><TITLE>Current Shopping Cart Items</TITLE></HEAD>");
out.println("<BODY>") ;

// Cart items are passed in as the item parameter.
String[] items = reqg.getParameterValues ("item") ;

// Print the current cart items.
out.println("You currently have the following items in your cart:
");

if (items == null) {
out.println("None") ;

}

else {

out.println("") ;

for (int i = 0; i < items.length; i++) {
out.println("" + items[i]);

}

out.println("");

// Ask if the user wants to add more items or check out.
// Include the current items as hidden fields so they'll be passed on.
out.println("<FORM ACTION=\"/servlet/ShoppingCart\" METHOD=POST>") ;
if (items !'= null) {
for (int i = 0; i < items.length; i++) {
out.println ("<INPUT TYPE=hidden NAME=item VALUE=\"" +
items[i] + "\">");

}

out.println("Would you like to
");

out.println("<INPUT TYPE=submit VALUE=\" Add More Items \">");
out.println("<INPUT TYPE=submit VALUE=\" Check Out \">");
out.println("</FORM>") ;

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

HIDDEN FORM FIELDS 199

Example 7-1. Session tracking using hidden form fields (continued)

out.println("</BODY></HTML>") ;

Current Shopping Cart Items - Netscape

File Edt Wiew Go Communicator Help

2 ¢ 3 & 2 £ 9 &£ @
Back Fonward Feload Home Seach Guide Frint Securty Stop
.— wt' Bookmarks \g{ Location:Ihttp:.n".n"localhost:SDSD.I"SBWIBLI"ShoppingEarNiewer?item:Java+Sewluj

You currently have the following items m your cart:

+ Java Servlet Programming
* Javain a Nutzhell
+ Wehmaster in a Nutshell

WWould you ke to
Add More lterns | Check Out

,@| | Document: Done
Figure 7-1. Shopping cart contents

This servlet first reads the items already in the cart using
getParameterValues ("item"). Presumably, the item parameter values were
sent to this servlet using hidden fields. The servlet then displays the current items
to the user and asks if he wants to add more items or check out. The servlet asks its
question with a form that includes hidden fields, so the form’s target (the
ShoppingCart servlet) receives the current items as part of the submission.

As more and more information is associated with a client’s session, it can become
burdensome to pass it all using hidden form fields. In these situations, it’s possible
to pass on just a unique session ID that identifies a particular client’s session. That
session ID can be associated with complete information about the session that is
stored on the server.

The advantages of hidden form fields are their ubiquity and support for
anonymity. Hidden fields are supported in all the popular browsers, they demand
no special server requirements, and they can be used with clients that haven’t
registered or logged in. The major disadvantage with this technique, however, is
that it works only for a sequence of dynamically generated forms. The technique
breaks down immediately with static documents, emailed documents, book-
marked documents, and browser shutdowns.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

200 CHAPTER 7: SESSION TRACKING

URL Rewriting

URL rewriting is another way to support anonymous session tracking. With URL
rewriting, every local URL the user might click on is dynamically modified, or
rewritten, to include extra information. The extra information can be in the form
of extra path information, added parameters, or some custom, server-specific URL
change. Due to the limited space available in rewriting a URL, the extra informa-
tion is usually limited to a unique session ID. For example, the following URLs
have been rewritten to pass the session ID 123:

http://server:port/servlet/Rewritten original
http://server:port/servlet/Rewritten/123 extra path information
http://server:port/servliet/Rewritten?sessionid=123 added parameter
http://server:port/servliet/Rewritten; $sessionid$123 custom change

Each rewriting technique has its advantages and disadvantages. Using extra path
information works on all servers, and it works as a target for forms that use both
the GET and POST methods. It doesn’t work well if a servlet has to use the extra
path information as true path information, however. Using an added parameter
works on all servers too, but it fails as a target for forms that use the POST method,
and it can cause parameter naming collisions. Using a custom, server-specific
change works under all conditions for servers that support the change. Unfortu-
nately, it doesn’t work at all for servers that don’t support the change.

Example 7-2 shows a revised version of our shopping cart viewer that uses URL
rewriting in the form of extra path information to anonymously track a shopping
cart.

Example 7-2. Session tracking using URL rewriting

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ShoppingCartViewerRewrite extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType ("text/html") ;
PrintWriter out = res.getWriter();

out.println ("<HEAD><TITLE>Current Shopping Cart Items</TITLE></HEAD>");
out.println("<BODY>") ;

// Get the current session ID, or generate one if necessary
String sessionid = req.getPathInfo();
if (sessionid == null) {

sessionid = generateSessionId();

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

URL REWRITING 201

Example 7-2. Session tracking using URL rewriting (continued)

}

// Cart items are associated with the session ID
String[] items = getItemsFromCart (sessionid);

// Print the current cart items.
out.println("You currently have the following items in your cart:
");

if (items == null) {

out .println("None") ;
}
else {

out.println("") ;

for (int i = 0; i < items.length; i++) {
out.println("" + items[i]);

}

out.println("");

// Ask if the user wants to add more items or check out.

// Include the session ID in the action URL.

out.println("<FORM ACTION=\"/servlet/ShoppingCart/" + sessionid +
"\" METHOD=POST>") ;

out.println("Would you like to
");

out.println("<INPUT TYPE=submit VALUE=\" Add More Items \">");

out.println("<INPUT TYPE=submit VALUE=\" Check Out \">");

out.println("</FORM>") ;

// Offer a help page. Include the session ID in the URL.
out.println("For help, click <A HREF=\"/servlet/Help/" + sessionid +
"?topic=ShoppingCartViewerRewrite\">here");

out.println("</BODY></HTML>") ;

private static String generateSessionId() {
String uid = new java.rmi.server.UID().toString(); // guaranteed unique
return java.net.URLEncoder.encode(uid); // encode any special chars

private static String[] getItemsFromCart (String sessionid) {
// Not implemented

}

This servlet first tries to retrieve the current session ID using getPathInfo(). If a
session ID is not specified, it calls generateSessionId() to generate a new
unique session ID using an RMI class designed specifically for this. The session ID

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

202 CHAPTER 7: SESSION TRACKING

is used to fetch and display the current items in the cart. The ID is then added to
the form’s ACTION attribute, so it can be retrieved by the ShoppingCart servlet.
The session ID is also added to a new help URL that invokes the Help servlet. This
wasn’t possible with hidden form fields because the Help servlet isn’t the target of
a form submission.

The advantages and disadvantages of URL rewriting closely match those of hidden
form fields. The major difference is that URL rewriting works for all dynamically
created documents, such as the Help servlet, not just forms. Plus, with the right
server support, custom URL rewriting can even work for static documents. Unfor-
tunately, actually performing the URL rewriting can be tedious.

Persistent Cookies

A fourth technique to perform session tracking involves persistent cookies. A cookie
is a bit of information sent by a web server to a browser that can later be read back
from that browser. When a browser receives a cookie, it saves the cookie and there-
after sends the cookie back to the server each time it accesses a page on that
server, subject to certain rules. Because a cookie’s value can uniquely identify a
client, cookies are often used for session tracking.

Cookies were first introduced in Netscape Navigator. Although they were not part
of the official HTTP specification, cookies quickly became a de facto standard
supported in all the popular browsers including Netscape 0.94 Beta and up and
Microsoft Internet Explorer 2 and up. Currently the HTTP Working Group of the
Internet Engineering Task Force (IETF) is in the process of making cookies an
official standard as written in RFC 2109. For more information on cookies see
Netscape’s Cookie Specification at http://home.netscape.com/newsref/std/cookie_spec.
html and RFC 2109 at hitp://www.ietf.org/rfc/rfc2109.txt. Another good site is http://

www. cookiecentral.com.

Working with Cookies

Version 2.0 of the Servlet API provides the javax.servlet.http.Cookie class
for working with cookies. The HTTP header details for the cookies are handled by
the Servlet API. You create a cookie with the Cookie () constructor:

public Cookie(String name, String value)

This creates a new cookie with an initial name and value. The rules for valid names
and values are given in Netscape’s Cookie Specification and RFC 2109.

A servlet can send a cookie to the client by passing a Cookie object to the
addCookie () method of HttpServletResponse:

public void HttpServletResponse.addCookie (Cookie cookie)

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

PERSISTENT COOKIES 203

This method adds the specified cookie to the response. Additional cookies can be
added with subsequent calls to addCookie (). Because cookies are sent using
HTTP headers, they should be added to the response before you send any
content. Browsers are only required to accept 20 cookies per site, 300 total per
user, and they can limit each cookie’s size to 4096 bytes.

The code to set a cookie looks like this:

Cookie cookie = new Cookie("ID", "123");
res.addCookie (cookie) ;

A servlet retrieves cookies by calling the getCookies () method of HttpServlet-
Request:

public Cookie[] HttpServletRequest.getCookies ()

This method returns an array of Cookie objects that contains all the cookies sent
by the browser as part of the request or null if no cookies were sent. The code to
fetch cookies looks like this:

Cookie[] cookies = reqg.getCookies();
if (cookies != null) {
for (int i = 0; i < cookies.length; i++) {
String name = cookies[i].getName() ;
String value = cookies[i].getValue();

}

You can set a number of attributes for a cookie in addition to its name and value.
The following methods are used to set these attributes. As you can see in
Appendix B, HT'TP Servlet API Quick Reference, there is a corresponding get method
for each set method. The get methods are rarely used, however, because when a
cookie is sent to the server, it contains only its name, value, and version.

public void Cookie.setVersion (int v)
Sets the version of a cookie. Servlets can send and receive cookies formatted to
match either Netscape persistent cookies (Version 0) or the newer, somewhat
experimental, RFC 2109 cookies (Version 1). Newly constructed cookies
default to Version 0 to maximize interoperability.

public void Cookie.setDomain (String pattern)

Specifies a domain restriction pattern. A domain pattern specifies the servers
that should see a cookie. By default, cookies are returned only to the host that
saved them. Specifying a domain name pattern overrides this. The pattern
must begin with a dot and must contain at least two dots. A pattern matches
only one entry beyond the initial dot. For example, ".foo.com" is valid and
matches www.foo.com and upload. foo.com but not www.upload. foo.com. For details
on domain patterns, see Netscape’s Cookie Specification and RFC 2109.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

204 CHAPTER 7: SESSION TRACKING

public void Cookie.setMaxAge (int expiry)
Specifies the maximum age of the cookie in seconds before it expires. A nega-
tive value indicates the default, that the cookie should expire when the
browser exits. A zero value tells the browser to delete the cookie immediately.

public void Cookie.setPath(String uri)

Specifies a path for the cookie, which is the subset of URIs to which a cookie
should be sent. By default, cookies are sent to the page that set the cookie and
to all the pages in that directory or under that directory. For example, if /
servlet/CookieMonster sets a cookie, the default path is "/servlet". That path
indicates the cookie should be sent to /servlet/Elmo and to /servlet/subdir/
BigBird—but not to the /Oscar.html servlet alias or to any CGI programs under
/cgi-bin. A path set to "/" causes a cookie to be sent to all the pages on a
server. A cookie’s path must be such that it includes the servlet that set the
cookie.

public void Cookie.setSecure (boolean flag)
Indicates whether the cookie should be sent only over a secure channel, such
as SSL. By default, its value is false.

public void Cookie.setComment (String comment)
Sets the comment field of the cookie. A comment describes the intended
purpose of a cookie. Web browsers may choose to display this text to the user.
Comments are not supported by Version 0 cookies.

public void Cookie.setValue (String newValue)
Assigns a new value to a cookie. With Version 0 cookies, values should not
contain the following: whitespace, brackets and parentheses, equals signs,
commas, double quotes, slashes, question marks, at signs, colons, and semico-
lons. Empty values may not behave the same way on all browsers.

Shopping Using Persistent Cookies

Example 7-3 shows a version of our shopping cart viewer that has been modified to
maintain the shopping cart using persistent cookies.

Example 7-3. Session tracking using persistent cookies

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ShoppingCartViewerCookie extends HttpServlet {
public void doGet (HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {
res.setContentType ("text/html") ;

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

PERSISTENT COOKIES 205

Example 7-3. Session tracking using persistent cookies (continued)

PrintWriter out = res.getWriter();

// Get the current session ID by searching the received cookies.
String sessionid = null;
Cookie[] cookies = reqg.getCookies();
if (cookies != null) {
for (int i = 0; i < cookies.length; i++) {
if (cookies[i].getName () .equals("sessionid")) {
sessionid = cookies[i].getValue();
break;

// If the session ID wasn't sent, generate one.
// Then be sure to send it to the client with the response.
if (sessionid == null) {
sessionid = generateSessionId();
Cookie ¢ = new Cookie("sessionid", sessionid);
res.addCookie(c) ;

out.println ("<HEAD><TITLE>Current Shopping Cart Items</TITLE></HEAD>");
out.println("<BODY>") ;

// Cart items are associated with the session ID
String[] items = getItemsFromCart (sessionid);

// Print the current cart items.
out.println("You currently have the following items in your cart:
");
if (items == null) {
out.println("None") ;
}
else {
out.println("") ;
for (int i = 0; i < items.length; i++) {
out.println("" + items[i]);
}
out.println("");

// Ask if they want to add more items or check out.
out.println("<FORM ACTION=\"/servlet/ShoppingCart\" METHOD=POST>") ;
out.println("Would you like to
");

out.println("<INPUT TYPE=submit VALUE=\" Add More Items \">");
out.println("<INPUT TYPE=submit VALUE=\" Check Out \">");
out.println("</FORM>") ;

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

206 CHAPTER 7: SESSION TRACKING

Example 7-3. Session tracking using persistent cookies (continued)

// Offer a help page.
out.println("For help, click <A HREF=\"/servlet/Help" +
"?topic=ShoppingCartViewerCookie\ ">here") ;

out.println("</BODY></HTML>") ;

private static String generateSessionId() {
String uid = new java.rmi.server.UID().toString(); // guaranteed unique
return java.net.URLEncoder.encode(uid); // encode any special chars

private static String[] getItemsFromCart (String sessionid) {
// Not implemented

}

This servlet first tries to fetch the client’s session ID by iterating through the
cookies it received as part of the request. If no cookie contains a session ID, the
servlet generates a new one using generateSessionId() and adds a cookie
containing the new session ID to the response. The rest of this servlet matches the
URL rewriting version, except that this version doesn’t perform any rewriting.

Persistent cookies offer an elegant, efficient, easy way to implement session
tracking. Cookies provide as automatic an introduction for each request as you
could hope for. For each request, a cookie can automatically provide a client’s
session ID or perhaps a list of the client’s preferences. In addition, the ability to
customize cookies gives them extra power and versatility.

The biggest problem with cookies is that browsers don’t always accept cookies.
Sometimes this is because the browser doesn’t support cookies. More often, it’s
because the user has specifically configured the browser to refuse cookies (out of
privacy concerns, perhaps). If any of your clients might not accept cookies, you
have to fall back to the solutions discussed earlier in this chapter.

The Session Tracking API

Fortunately for us servlet developers, it’s not always necessary for a servlet to
manage its own sessions using the techniques we have just discussed. The Servlet
API provides several methods and classes specifically designed to handle session
tracking on behalf of servlets. In other words, servlets have built in session
tracking.”

* Yes, we do feel a little like the third grade teacher who taught you all the steps of long division, only
to reveal later how you could use a calculator to do the same thing. But we believe, as your teacher
probably did, that you better understand the concepts after first learning the traditional approach.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE SESSION TRACKING API 207

The Session Tracking API, as we call the portion of the Servlet API devoted to
session tracking, should be supported in any web server that supports servlets. The
level of support, however, depends on the server. The minimal implementation
provided by the servlet classes in JSDK 2.0 manages sessions through the use of
persistent cookies. A server can build on this base to provide additional features
and capabilities. For example, the Java Web Server has the ability to revert to using
URL rewriting when cookies fail, and it allows session objects to be written to the
server’s disk as memory fills up or when the server shuts down. (The items you
place in the session need to implement the Serializable interface to take advan-
tage of this option.) See your server’s documentation for details pertaining to your
server. The rest of this section describe the lowest-common-denominator function-
ality provided by Version 2.0 of the Servlet API.

Session-Tracking Basics

Session tracking is wonderfully elegant. Every user of a site is associated with a
javax.servlet.http.HttpSession object that servlets can use to store or
retrieve information about that user. You can save any set of arbitrary Java objects
in a session object. For example, a user’s session object provides a convenient loca-
tion for a servlet to store the user’s shopping cart contents or, as you'll see in
Chapter 9, Database Connectivity, the user’s database connection.

A servlet uses its request object’s getSession() method to retrieve the current
HttpSession object:

public HttpSession HttpServletRequest.getSession (boolean create)

This method returns the current session associated with the user making the
request. If the user has no current valid session, this method creates one if create
is true or returns null if create is false. To ensure the session is properly
maintained, this method must be called at least once before any output is written
to the response.

You can add data to an HttpSession object with the putValue () method:
public void HttpSession.putValue (String name, Object value)

This method binds the specified object value under the specified name. Any
existing binding with the same name is replaced. To retrieve an object from a
session, use getValue():

public Object HttpSession.getValue (String name)

This methods returns the object bound under the specified name or null if there
is no binding. You can also get the names of all of the objects bound to a session
with getValueNames ():

public String[] HttpSession.getValueNames ()

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

208 CHAPTER 7: SESSION TRACKING

This method returns an array that contains the names of all objects bound to this
session or an empty (zero length) array if there are no bindings. Finally, you can
remove an object from a session with removevValue ():

public void HttpSession.removeValue (String name)

This method removes the object bound to the specified name or does nothing if
there is no binding. Each of these methods can throw a java.lang.
IllegalStateException if the session being accessed is invalid (we’ll discuss
invalid sessions in an upcoming section).

A Hit Count Using Session Tracking

Example 7-4 shows a simple servlet that uses session tracking to count the number
of times a client has accessed it, as shown in Figure 7-2. The servlet also displays all
the bindings for the current session, just because it can.

Example 7-4. Session tracking a hit count

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class SessionTracker extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType ("text/html") ;
PrintWriter out = res.getWriter();

// Get the current session object, create one if necessary
HttpSession session = req.getSession (true);

// Increment the hit count for this page. The value is saved
// in this client's session under the name "tracker.count".
Integer count = (Integer)session.getValue ("tracker.count");
if (count == null)

count = new Integer(l);
else

count = new Integer (count.intValue() + 1);
session.putValue ("tracker.count", count);

out .println ("<HTML><HEAD><TITLE>SessionTracker</TITLE></HEAD>") ;
out.println("<BODY><Hl>Session Tracking Demo</H1>") ;

// Display the hit count for this page
out.println("You've visited this page " + count +
((count.intValue() == 1) ? " time." : " times."));

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE SESSION TRACKING API 209

Example 7-4. Session tracking a hit count (continued)

out.println("<pP>");

out.println("<H2>Here is your session data:</H2>");
String[] names = session.getValueNames () ;
for (int i = 0; i < names.length; i++) {
out.println(names[i] + ": " + session.getValue(names[i]) + "
");
}
out.println("</BODY></HTML>") ;

| File Edit View Go Communicator

2 » A 4 2 £ S £ i
Back Forward Reload Home Search Guide Print Security Stop
¥ Bockmarks & GoTo:

Session Tracking Demo

You've visited this page 12 times.

| Here is your session data:

maovie level: beginner
| movie.zip: 50677
| tracker.count: 12

=]

Figure 7-2. Counting client visits

This servlet first gets the HttpSession object associated with the current client. By
passing true to getSession (), it asks for a session to be created if necessary. The
servlet then gets the Integer object bound to the name "tracker.count". If
there is no such object, the servlet starts a new count. Otherwise, it replaces the
Integer with a new Integer whose value has been incremented by one. Finally,
the servlet displays the current count and all the current name/value pairs in the
session.

The Session Life Cycle

Sessions do not last forever. A session either expires automatically, after a set time of
inactivity (for the Java Web Server the default is 30 minutes), or manually, when it is
explicitly invalidated by a servlet. When a session expires (or is invalidated), the
HttpSession object and the data values it contains are removed from the system.

Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

210 CHAPTER 7: SESSION TRACKING

Beware that any information saved in a user’s session object is lost when the
session is invalidated. If you need to retain information beyond that time, you
should keep it in an external location (such as a database) and store a handle to
the external data in the session object (or your own persistant cookie).

There are several methods involved in managing the session life cycle:

public boolean HttpSession.isNew()
This method returns whether the session is new. A session is considered new if
it has been created by the server but the client has not yet acknowledged
joining the session. For example, if a server supports only cookie-based
sessions and a client has completely disabled the use of cookies, calls to the
getSession () method of HttpServletRequest always return new sessions.

public void HttpSession.invalidate()
This method causes the session to be immediately invalidated. All objects
stored in the session are unbound.

public long HttpSession.getCreationTime ()
This method returns the time at which the session was created, as a 1ong value
that represents the number of milliseconds since the epoch (midnight,
January 1, 1970, GMT).

public long HttpSession.getLastAccessedTime ()
This method returns the time at which the client last sent a request associated
with this session, as a long value that represents the number of milliseconds
since the epoch.

Each of these methods can throw a java.lang.IllegalStateException if the
session being accessed is invalid.

Manually Invalidating a Stale Session

To demonstrate these methods, Example 7-5 shows a servlet that manually invali-
dates a session if it is more than a day old or has been inactive for more than an
hour.

Example 7-5. Invalidating a stale session

import java.io.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class ManualInvalidate extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE SESSION TRACKING API 211

Example 7-5. Invalidating a stale session (continued)
res.setContentType ("text/html") ;

PrintWriter out = res.getWriter();

// Get the current session object, create one if necessary
HttpSession session = reqg.getSession(true) ;

// Invalidate the session if it's more than a day old or has been
// inactive for more than an hour.

if (!session.isNew()) { // skip new sessions
Date dayAgo = new Date(System.currentTimeMillis() - 24*60*60*1000) ;
Date hourAgo = new Date(System.currentTimeMillis() - 60*60*1000) ;

Date created = new Date(session.getCreationTime()) ;
Date accessed = new Date(session.getlLastAccessedTime()) ;

if (created.before (dayAgo) || accessed.before (hourAgo)) {
session.invalidate() ;
session = reqg.getSession(true); // get a new session

// Continue processing...

Putting Sessions in Context

So, how does a web server implement session tracking? When a user first accesses
the site, that user is assigned a new HttpSession object and a unique session ID.
The session ID identifies the user and is used to match the user with the
HttpSession object in subsequent requests. Behind the scenes, the session ID is
usually saved on the client in a cookie or sent as part of a rewritten URL. Other
implementations, such as using SSL (Secure Sockets Layer) sessions, are also
possible.

A servlet can discover a session’s ID with the getId () method:
public String HttpSession.getId()

This method returns the unique String identifier assigned to this session. For
example, a Java Web Server 1D might be something like
HT04D1QAAAAABQDGPM5QAAA. The method throws an IllegalState-
Exception if the session is invalid.

All valid sessions are grouped together in a HttpSessionContext object. Theo-
retically, a server may have multiple session contexts, although in practice most
have just one. A reference to the server’s HttpSessionContext is available via any
session object’s getSessionContext () method:

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

212 CHAPTER 7: SESSION TRACKING

public HttpSessionContext HttpSession.getSessionContext ()

This method returns the context in which the session is bound. It throws an
IllegalStateException if the session is invalid.

Once you have an HttpSessionContext, it’s possible to use it to examine all the
currently valid sessions with the following two methods:

public Enumeration HttpSessionContext.getIds ()
public HttpSession HttpSessionContext.getSession(String sessionId)

The getIds () method returns an Enumeration that contains the session IDs for
all the currently valid sessions in this context or an empty Enumeration if there
are no valid sessions. getSession() returns the session associated with the given
session ID. The session IDs returned by getIds () should be held as a server secret
because any client with knowledge of another client’s session ID can, with a forged
cookie or URL, join the second client’s session.

Manually Invalidating All Stale Sessions

Example 7-6 demonstrates the use of these methods with a servlet that manually
invalidates all the sessions on the server that are more than a day old or have been
inactive more than an hour.

Example 7-6. Invalidating all stale sessions

import java.io.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class ManualInvalidateScan extends HttpServlet ({

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType ("text/plain") ;
PrintWriter out = res.getWriter();

// Get the current session object, create one if necessary
HttpSession dummySession = req.getSession(true);

// Use the session to get the session context
HttpSessionContext context = dummySession.getSessionContext () ;

// Use the session context to get a list of session IDs
Enumeration ids = context.getIds();

// Iterate over the session IDs checking for stale sessions
while (ids.hasMoreElements()) {

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE SESSION TRACKING API 213

Example 7-6. Invalidating all stale sessions (continued)

String id = (String)ids.nextElement () ;
out.println("Checking " + id + "...");
HttpSession session = context.getSession(id);

// Invalidate the session if it's more than a day old or has been
// inactive for more than an hour.

Date dayAgo = new Date(System.currentTimeMillis() - 24*60*60*1000) ;
Date hourAgo = new Date(System.currentTimeMillis() - 60*60*1000) ;
Date created = new Date(session.getCreationTime()) ;

Date accessed = new Date(session.getLastAccessedTime());

if (created.before(dayAgo)) {
out.println("More than a day old, invalidated!");
session.invalidate() ;

}

else if (accessed.before (hourAgo)) {
out.println("More than an hour inactive, invalidated!");
session.invalidate() ;

}

else {
out.println("Still valid.");

}

out.println();

}

A servlet that manually invalidates sessions according to arbitrary rules is useful on
servers with limited session expiration capabilities.

Storing Session IDs

Every server that supports servlets should implement at least cookie-based session
tracking, where the session ID is saved on the client in a persistent cookie. Many
web servers also support session tracking based on URL rewriting, as a fallback for
browsers that don’t accept cookies. This requires additional help from servlets.

For a servlet to support session tracking via URL rewriting, it has to rewrite every
local URL before sending it to the client. The Servlet API provides two methods to
perform this encoding:

public String HttpServletResponse.encodeUrl (String url)
This method encodes (rewrites) the specified URL to include the session ID
and returns the new URL, or, if encoding is not needed or not supported, it
leaves the URL unchanged. The rules used to decide when and how to encode

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

214 CHAPTER 7: SESSION TRACKING

a URL are server-specific. All URLs emitted by a servlet should be run through
this method.

public String HttpServletResponse.encodeRedirectUrl (String url)
This method encodes (rewrites) the specified URL to include the session ID
and returns the new URL, or, if encoding is not needed or not supported, it
leaves the URL unchanged. The rules used to decide when and how to encode a
URL are serverspecific. This method may use different rules than
encodeUrl(). All URLs passed to the sendRedirect() method of
HttpServletResponse should be run through this method.

Note that encodeUr1 () and encodeRedirectedUrl () employ a different capital-
ization scheme than getRequestURL() and getRequestURI (). The following
code snippet shows a servlet writing a link to itself that is encoded to contain the
current session ID:

out.println("Click <A HREF=\"" +
res.encodeUrl (reqg.getRequestURI()) + "\">here");
out.println("to reload this page.");

On servers that don’t support URL rewriting or have URL rewriting turned off,
the resulting URL remains unchanged. Now here’s a code snippet that shows a
servlet redirecting the user to a URL encoded to contain the session ID:

res.sendRedirect (res.encodeRedirectUrl (" /servlet/NewServlet")) ;

On servers that don’t support URL rewriting or have URL rewriting turned off,
the resulting URL remains unchanged.

A servlet can detect whether the session ID used to identify the current
HttpSession object came from a cookie or from an encoded URL using the
isRequestedSessionIdFromCookie () and isRequestedSessionIdFromUrl ()
methods:

public boolean HttpServletRequest.isRequestedSessionIdFromCookie ()
public boolean HttpServletRequest.isRequestedSessionIdFromUrl ()

Determining if the session ID came from another source, such as an SSL session, is
not currently possible.

A requested session ID may not match the ID of the session returned by the
getSession () method, such as when the session ID is invalid. A servlet can deter-
mine whether a requested session ID is valid using isRequestedSession-
Idvalid():

public boolean HttpServletRequest.isRequestedSessionIdvalid()

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE SESSION TRACKING API 215

Session Snoop

The SessionSnoop servlet shown in Example 7-7 uses most of the methods
discussed thus far in the chapter to snoop information about the current session
and other sessions on the server. Figure 7-3 shows a sample of its output.

Example 7-7. Snooping session information

import java.io.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class SessionSnoop extends HttpServlet ({

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType ("text/html") ;
PrintWriter out = res.getWriter();

// Get the current session object, create one if necessary
HttpSession session = req.getSession(true);

// Increment the hit count for this page. The value is saved
// in this client's session under the name "snoop.count".
Integer count = (Integer)session.getValue ("snoop.count");
if (count == null)

count = new Integer(l);
else

count = new Integer (count.intValue() + 1);
session.putValue ("snoop.count", count);

out.println ("<HTML><HEAD><TITLE>SessionSnoop</TITLE></HEAD>") ;
out.println("<BODY><Hl>Session Snoop</H1>");

// Display the hit count for this page
out.println("You've visited this page " + count +
((count.intValue() == 1) ? " time." : " times."));

out.println("<pP>");

out.println("<H3>Here is your saved session data:</H3>");
String[] names = session.getValueNames () ;
for (int 1 = 0; i < names.length; i++) {
out.println(names[i] + ": " + session.getValue(names[i]) + "
");

out.println("<H3>Here are some vital stats on your session:</H3>");
out.println("Session id: " + session.getId() + "
");

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

216 CHAPTER 7: SESSION TRACKING

Example 7-7. Snooping session information (continued)

out.println("New session: " + session.isNew() + "
");

out.println("Creation time: " + session.getCreationTime());

out.println("<I>(" + new Date(session.getCreationTime()) + ")</I>
");

out.println("Last access time: " + session.getLastAccessedTime());

out.println("<I>(" + new Date(session.getLastAccessedTime()) +
")</I>
") ;

out.println("Requested session ID from cookie: " +
req.isRequestedSessionIdFromCookie() + "
");
out.println("Requested session ID from URL: " +
req.isRequestedSessionIdFromUrl () + "
");
out.println("Requested session ID valid: " +
req.isRequestedSessionIdvalid() + "
");

out.println("<H3>Here are all the current session IDs");
out.println("and the times they've hit this page:</H3>");
HttpSessionContext context = session.getSessionContext ()

Enumeration ids = context.getIds();
while (ids.hasMoreElements()) {
String id = (String)ids.nextElement () ;
out.println(id + ": ");
HttpSession foreignSession = context.getSession(id);
Integer foreignCount =
(Integer) foreignSession.getValue ("snoop.count") ;
if (foreignCount == null)
out.println(0) ;
else
out.println(foreignCount.toString()) ;
out.println("
") ;

out.println("<H3>Test URL Rewriting</H3>");
out.println("Click <A HREF=\"" +

res.encodeUrl (reqg.getRequestURI()) + "\">here");
out.println("to test that session tracking works via URL");
out.println("rewriting even when cookies aren't supported.");

out.println("</BODY></HTML>") ;

}

This servlet begins with the same code as the SessionTracker servlet shown in
Example 7-4. Then it continues on to display the current session’s ID, whether it is a
new session, the session’s creation time, and the session’s last access time. Next the
servlet displays whether the requested session ID (if there is one) came from a
cookie or a URL and whether the requested ID is valid. Then the servlet iterates over
all the currently valid session IDs, displaying the number of times they have visited

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE SESSION TRACKING API 217

| File Edit “iew Go Communicator

2 =2 A4 & 2 £ S &

Back Forvard Reload Home Search Guide Print Security Stop

w§ " Baokmarks & GOTOZIhttp://localhost:8080/servlet/SessionSnoop !|

| Here are some vital stats on your session:

| Session id: IRIZEQY AAAAARQDGPMSQAAA

| New session: false

| Creation time: 894499320501 (Wed May 06 17.:02.00 FDT 1995)

| Last access time: 894499992295 (Wed May 06 17.:33:12 PDT 1998)
| Requested session [D from cookie: true

| Requested session ID from URL: false

| Requested seszion [D walid: true

Here are all the current session IDs and the times they’ve hit this page:
[RP20W Y AAAAADOQDGPMSQAAN: 4
| IRIZEQYAAAAABQDGPMSQAAA; 9
| [RQ3RBQAAAAAFQDGOMSQAAA: 7

| Test URL Rewriting

Click here fo test thaf session tracking works wia URL rewriting when cookies aren’t supported.

= |

Figure 7-3. Example output from SessionSnoop

this page. Finally, the servlet prints an encoded URL that can be used to reload this
page to test that URL rewriting works even when cookies aren’t supported.

Note that installing this servlet is a security risk, as it exposes the server’s session
IDs—these may be used by unscrupulous clients to join other clients’ sessions. The
SessionServlet that is installed by default with the Java Web Server 1.1.x has
similar behavior.

Session Binding Events

Some objects may wish to perform an action when they are bound or unbound
from a session. For example, a database connection may begin a transaction when
bound to a session and end the transaction when unbound. Any object that imple-
ments the javax.servlet.http.HttpSessionBindingListener interface is
notified when it is bound or unbound from a session. The interface declares two
methods, valueBound () and valueUnbound (), that must be implemented:

public void HttpSessionBindingListener.valueBound (
HttpSessionBindingEvent event)

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

218 CHAPTER 7: SESSION TRACKING

public void HttpSessionBindingListener.valueUnbound (
HttpSessionBindingEvent event)

The valueBound () method is called when the listener is bound into a session,
and valueUnbound () is called when the listener is unbound from a session.

The javax.servlet.http.HttpSessionBindingEvent argument provides
access to the name under which the object is being bound (or unbound) with the
getName () method:

public String HttpSessionBindingEvent.getName ()

The HttpSessionBindingEvent object also provides access to the HttpSession
object to which the listener is being bound (or unbound) with getSession():

public HttpSession HttpSessionBindingEvent.getSession ()

Example 7-8 demonstrates the use of HttpSessionBindingListener and
HttpSessionBindingEvent with a listener that logs when it is bound and
unbound from a session.

Example 7-8. Tracking session binding events

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class SessionBindings extends HttpServlet {
public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType ("text/plain") ;

PrintWriter out = res.getWriter();

// Get the current session object, create one if necessary
HttpSession session = req.getSession(true);

// Add a CustomBindingListener
session.putValue ("bindings.listener",

new CustomBindingListener (getServletContext()));

out.println("This page intentionally left blank");

class CustomBindingListener implements HttpSessionBindingListener {

// Save a ServletContext to be used for its log() method
ServletContext context;

public CustomBindingListener (ServletContext context) {

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE SESSION TRACKING API 219

Example 7-8. Tracking session binding events (continued)

this.context = context;

public void valueBound (HttpSessionBindingEvent event) {
context.log("BOUND as " + event.getName() +
" to " + event.getSession() .getId());

public void valueUnbound (HttpSessionBindingEvent event) {
context.log("UNBOUND as " + event.getName() +
" from " + event.getSession().getId());

}

Each time a CustomBindingListener object is bound to a session, its
valueBound () method is called and the event is logged. Each time it is unbound
from a session, its valueUnbound () method is called so that event too is logged.
We can observe the sequence of events by looking at the server’s event log.

Let’s assume that this servlet is called once, reloaded 30 seconds later, and not
called again for at least a half hour. The event log would look something like this:

[Tue Jan 27 01:46:48 PST 1998]

BOUND as bindings.listener to INWBUJIAAAAAHQDGPMS5QAAA
[Tue Jan 27 01:47:18 PST 1998]

UNBOUND as bindings.listener from INWBUJIAAAAAHQDGPM5QAAA
[Tue Jan 27 01:47:18 PST 1998]

BOUND as bindings.listener to INWBUJIAAAAAHQDGPMSQAAA
[Tue Jan 27 02:17:18 PST 1998]

UNBOUND as bindings.listener from INWBUJIAAAAAHQDGPM5QAAA

The first entry occurs during the first page request, when the listener is bound to
the new session. The second and third entries occur during the reload, as the

listener is unbound and rebound during the same putValue() call. The fourth
entry occurs a half hour later, when the session expires and is invalidated.

Shopping Using Session Tracking

Let’s end this chapter with a look at how remarkably simple our shopping cart
viewer servlet becomes when we use session tracking. Example 7-9 shows the
viewer saving each of the cart’s items in the user’s session under the name "cart.
items".

Example 7-9. Using the session tracking API

import java.io.*;
import javax.servlet.*;

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

220 CHAPTER 7: SESSION TRACKING

Example 7-9. Using the session tracking API (continued)

import javax.servlet.http.*;
public class ShoppingCartViewerSession extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType ("text/html") ;
PrintWriter out = res.getWriter();

// Get the current session object, create one if necessary.
HttpSession session = reqg.getSession(true) ;

// Cart items are maintained in the session object.
String[] items = (String[])session.getValue("cart.items");

out.println ("<HTML><HEAD><TITLE>SessionTracker</TITLE></HEAD>") ;
out.println("<BODY><Hl>Session Tracking Demo</H1>") ;

// Print the current cart items.
out.println("You currently have the following items in your cart:
");

if (items == null) {
out.println("None") ;

}

else {

out.println("") ;

for (int i = 0; i < items.length; i++) {
out.println("" + items[i]);

}

out.println("") ;

// Ask if they want to add more items or check out.
out.println("<FORM ACTION=\"/servlet/ShoppingCart\" METHOD=POST>") ;
out.println("Would you like to
");

out.println("<INPUT TYPE=submit VALUE=\" Add More Items \">");
out.println ("<INPUT TYPE=submit VALUE=\" Check Out \">");
out.println("</FORM>") ;

// Offer a help page. Encode it as necessary.

out.println("For help, click <A HREF=\"" +
res.encodeUrl (" /servlet/Help?topic=ShoppingCartViewer") +
"\">here") ;

out.println("</BODY></HTML>") ;

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

In this chapter:

* HTTP Authentication

* Digital Certificates

* Secure Sockets Layer
(SSL)

* Running Servlets
Securely

Security

So far we have imagined that our servlets exist in a perfect world, where everyone
is trustworthy and nobody locks their doors at night. Sadly, that’s a 1950s fantasy
world: the truth is that the Internet has its share of fiendish rogues. As companies
place more and more emphasis on online commerce and begin to load their Intra-
nets with sensitive information, security has become one of the most important
topics in web programming.

Security is the science of keeping sensitive information in the hands of authorized
users. On the web, this boils down to three important issues:

Authentication
Being able to verify the identities of the parties involved
Confidentiality
Ensuring that only the parties involved can understand the communication
Integrity
Being able to verify that the content of the communication is not changed
during transmission

A client wants to be sure that it is talking to a legitimate server (authentication),
and it also want to be sure that any information it transmits, such as credit card
numbers, is not subject to eavesdropping (confidentiality). The server is also con-
cerned with authentication and confidentiality. If a company is selling a service or
providing sensitive information to its own employees, it has a vested interest in
making sure that nobody but an authorized user can access it. And both sides need
integrity to make sure that whatever information they send gets to the other party
unaltered.

Authentication, confidentiality, and integrity are all linked by digital certificate
technology. Digital certificates allow web servers and clients to use advanced

221
Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

222 CHAPTER 8: SECURITY

cryptographic techniques to handle identification and encryption in a secure man-
ner. Thanks to Java’s built-in support for digital certificates, servlets are an excel-
lent platform for deploying secure web applications that use digital certificate
technology. We’ll be taking a closer look at them later.

Security is also about making sure that crackers can’t gain access to the sensitive
data on your web server. Because Java was designed from the ground up as a
secure, network-oriented language, it is possible to leverage the built-in security
features and make sure that server add-ons from third parties are almost as safe as
the ones you write yourself.

This chapter introduces the basics of web security and digital certificate technol-
ogy in the context of using servlets. It also discusses how to maintain the security of
your web server when running servlets from untrusted third-parties. You’ll notice
that this chapter takes a higher-level approach and shows fewer examples than pre-
vious chapters. The reason is that many of the topics in this chapter require web
server-specific administration to implement. The servlets just tag along for the
ride.

Finally, a note of caution. We are just a couple of servlet programmers, and we dis-
claim all responsibility for any security-related incidents that might result from fol-
lowing our advice. For a much more complete overview of web security technol-
ogy and procedures, see Web Security & Commerce by Simson Garfinkel with Gene
Spafford (O’Reilly). Of course, they probably won’t accept responsibility either.

HTTP Authentication

As we discussed briefly in Chapter 4, Retrieving Information, the HTTP protocol pro-
vides builtin authentication support—called basic authentication—based on a
simple challenge/response, username/password model. With this technique, the
web server maintains a database of usernames and passwords and identifies cer-
tain resources (files, directories, servlets, etc.) as protected. When a user requests
access to a protected resource, the server responds with a request for the client’s
username and password. At this point, the browser usually pops up a dialog box
where the user enters the information, and that input is sent back to the server as
part of a second authorized request. If the submitted username and password
match the information in the server’s database, access is granted. The whole
authentication process is handled by the server itself.

Basic authentication is very weak. It provides no confidentiality, no integrity, and
only the most basic authentication. The problem is that passwords are transmitted
over the network, thinly disguised by a well-known and easily reversed Base64
encoding. Anyone monitoring the TCP/IP data stream has full and immediate

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

HTTP AUTHENTICATION 223

access to all the information being exchanged, including the username and pass-
word. Plus, passwords are often stored on the server in clear text, making
them vulnerable to anyone cracking into the server’s file system. While it’s
certainly better than nothing, sites that rely exclusively on basic authentication
cannot be considered really secure.

Digest authentication is a variation on the basic authentication scheme. Instead of
transmitting a password over the network directly, a digest of the password is used
instead. The digest is produced by taking a hash (using the very secure MD)
encryption algorithm) of the username, password, URI, HTTP request
method, and a randomly generated “nonce” value provided by the server.
Both sides of the transaction know the password and use it to compute
digests. If the digests match, access is granted. Transactions are thus some-
what more secure than they would be otherwise because digests are valid for
only a single URI request and nonce value. The server, however, must still
maintain a database of the original passwords. And, as of this writing, digest
authentication is not supported by very many browsers.

The moral of the story is that HTTP authentication can be useful in low-security
environments. For example, a site that charges for access to content—say, an
online newspaper—is more concerned with ease of use and administration
than lock-tight security, so HTTP authentication is often sufficient.

Retrieving Authentication Information

A servlet can retrieve information about the server’s authentication using two meth-
ods introduced in Chapter4: getRemoteUser() and getAuthType()
Example 8-1 shows a simple servlet that tells the client its name and what kind of
authentication has been performed (basic, digest, or some alternative). To see this
servlet in action, you should install it in your web server and protect it with a basic or
digest security scheme. Because web server implementations vary, you’ll need
to check your server documentation for the specifics on how to set this up.

Example 8-1. Snooping the authorization information

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class AuthorizationSnoop extends HttpServlet {
public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType ("text/html") ;
PrintWriter out = res.getWriter();
out.println ("<HTML><HEAD><TITLE>Authorization Snoop</TITLE></HEAD><BODY>") ;

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

224 CHAPTER 8: SECURITY

Example 8-1. Snooping the authorization information (continued)

out.println("<H1>This is a password protected resource</H1>");
out.println("<PRE>") ;

out.println("User Name: " + req.getRemoteUser());
out.println("Authorization Type: " + req.getAuthType());
out.println("</PRE>") ;

out.println("</BODY></HTML>") ;

(
(
(
(

Custom Authorization

Normally, client authentication is handled by the web server. The server adminis-
trator tells the server which resources are to be restricted to which users, and infor-
mation about those users (such as their passwords) is somehow made available to
the server.

This is often good enough, but sometimes the desired security policy cannot be
implemented by the server. Maybe the user list needs to be stored in a format that
is not readable by the server. Or maybe you want any username to be allowed, as
long as it is given with the appropriate “skeleton key” password. To handle these
situations, we can use servlets. A servlet can be implemented so that it learns about
users from a specially formatted file or a relational database; it can also be written
to enforce any security policy you like. Such a servlet can even add, remove, or
manipulate user entries—something that isn’t supported directly in the Servlet
API, except through proprietary server extensions.”

A servlet uses status codes and HTTP headers to manage its own security policy.
The servlet receives encoded authorization credentials in the Authorization
header. If it chooses to deny those credentials, it does so by sending the SC_
UNAUTHORIZEBtatus code and a WWW-Authenticate header that describes the
desired credentials. A web server normally handles these details without involving
its servlets, but for a servlet to do its own authorization, it must handle these
details itself, while the server is told not to restrict access to the servlet.

The Authorization header, if sent by the client, contains the client’s username
and password. With the basic authorization scheme, the Authorization header
contains the string of " username. password' encoded in Base64. For example,

* Sadly, getAuthType() and getRemoteUser() are the only security-related methods supported in
the core Servlet API. This is because different web servers implement different types of security, mak-
ing a server-independent API difficult to develop. Individual servers and servlet implementations are
free to provide their own customized user management routines. The Java Web Server, for example,
provides servlets with programmatic access to its security and authentication systems using classes in
the com.sun.server.* packages. Servlets written to these APIs are, of course, non-portable.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

HTTP AUTHENTICATION 225

the username of "webmaster" with the password "try2gueSS" is sent in an
Authorization header with the value:

BASIC d2VibWFzdGVyOnRyeTIndWVTUw

If a servlet needs to, it can send an WWW-Authenticate header to tell the client
the authorization scheme and the realm against which users will be verified. A
realm is simply a collection of user accounts and protected resources. For exam-
ple, to tell the client to use basic authorization for the realm "Admin" , the WWW-
Authenticate header is:

BASIC realm="Admin"

Example 8-2 shows a servlet that performs custom authorization, receiving an
Authorization header and sending the SC_UNAUTHORIZEBtatus code and
WWW-Authenticate header when necessary. The servlet restricts access to its
“top-secret stuff” to those users (and passwords) it recognizes in its user list. For
this example, the list is kept in a simple Hashtable and its contents are hard-
coded; this would, of course, be replaced with some other mechanism, such as an
external relational database, for a production servlet.

To retrieve the Base64-encoded username and password, the servlet needs to use a
Base64 decoder. Fortunately, there are several freely available decoders. For this
servlet, we have chosen to use the sun.misc.BASE64Decoder class that accom-
panies the JDK. Being in the sun.* hierarchy means it’s unsupported and subject
to change, but it also means it’s probably already on your system. You can find the
details of Base64 encoding in RFC 1521 at http://wwuw.ietf.org/rfc/rfc1521. txt.

Example 8-2. Security in a servlet

import java.io.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class CustomAuth extends HttpServlet {
Hashtable users = new Hashtable();

public void init (ServletConfig config) throws ServletException {
super.init (config) ;

users.put ("Wallace:cheese", "allowed") ;
users.put ("Gromit:sheepnapper", "allowed");
users.put ("Penguin:evil", "allowed") ;

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

226 CHAPTER 8: SECURITY

Example 8-2. Security in a servlet (continued)

res.setContentType ("text/plain") ;
PrintWriter out = res.getWriter();

// Get Authorization header
String auth = reqg.getHeader ("Authorization");

// Do we allow that user?

if (!allowUser (auth)) ({
// Not allowed, so report he's unauthorized
res.setHeader ("WWW-Authenticate", "BASIC realm=\"users\"");
res.sendError (res.SC_UNAUTHORIZED) ;
// Could offer to add him to the allowed user list

}

else {
// Allowed, so show him the secret stuff
out.println("Top-secret stuff");

// This method checks the user information sent in the Authorization
// header against the database of users maintained in the users Hashtable.
protected boolean allowUser (String auth) throws IOException {

if (auth == null) return false; // no auth

if (!auth.toUpperCase() .startsWith("BASIC "))
return false; // we only do BASIC

// Get encoded user and password, comes after "BASIC "
String userpassEncoded = auth.substring(6);

// Decode it, using any base 64 decoder
sun.misc.BASE64Decoder dec = new sun.misc.BASE64Decoder () ;
String userpassDecoded = new String (dec.decodeBuffer (userpassEncoded)) ;

// Check our user list to see if that user and password are "allowed"
if ("allowed".equals (users.get (userpassDecoded))

return true;
else

return false;

}

Although the web server is told to grant any client access to this servlet, the servlet
sends its top-secret output only to those users it recognizes. With a few modifica-
tions, it could allow any user with a trusted skeleton password. Or, like anonymous
FTP, it could allow the "anonymous” username with any email address given as
the password.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

HTTP AUTHENTICATION 227

Custom authorization can be used for more than restricting access to a single serv-
let. Were we to add this logic to our ViewFile servlet, we could implement a cus-
tom access policy for an entire set of files. Were we to create a special subclass of
HttpServlet and add this logic to that, we could easily restrict access to every
servlet derived from that subclass. Our point is this: with custom authorization, the
security policy limitations of the server do not limit the possible security policy
implementations of its servlets.

Form-based Custom Authorization

Servlets can also perform custom authorization without relying on HTTP authori-
zation, by using HTML forms and session tracking instead. It’s a bit more effort to
give users a well-designed, descriptive, and friendly login page. For example, imag-
ine you're developing an online banking site. Would you rather let the browser
present a generic prompt for username and password or provide your customers
with a custom login form that politely asks for specific banking credentials, as
shown in Figure 8-1?

File Edit “iew Go Communicator

Ll T 2 £ = A

Back Forward Reload Home Search Guide Print Security Stop
uf Bookmarks & Metsite:

) I

EveryWhere OnLine Banking

Credit Union

“Welcome! Please enter your User 1D
and Security Code to log in.

User 1D:

Security Code:

Figure 8-1. An online banking login screen

Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

228 CHAPTER 8: SECURITY

Many banks and other online services have chosen to use form-based custom
authorization. Implementing such a system is relatively straightforward with serv-
lets. First, we need the login page. It can be written like any other HTML form.
Example 8-3 shows a sample login.html file that generates the form shown in
Figure 8-2.

Example 8-3. The login.html file

<HTML>

<TITLE>Login</TITLE>

<BODY>

<FORM ACTION=/servlet/LoginHandler METHOD=POST>
<CENTER>

<TABLE BORDER=0>

<TR><TD COLSPAN=2>

<P ALIGN=center>

Welcome! Please enter your Name

and Password to log in.

</TD></TR>

<TR><TD>

<P ALIGN=right>Name:

</TD>

<TD>

<P><INPUT TYPE=text NAME="name" VALUE="" SIZE=15>
</TD></TR>

<TR><TD>

<P ALIGN=right>Password:

</TD>

<TD>

<P><INPUT TYPE=password NAME="passwd" VALUE="" SIZE=15>
</TD></TR>

<TR><TD COLSPAN=2>

<CENTER>

<INPUT TYPE=submit VALUE=" OK ">
</CENTER>

</TD></TR>

</TABLE>

</BODY></HTML>

This form asks the client for her name and password, then submits the informa-
tion to the LoginHandler servlet that validates the login. We’ll see the code for
LoginHandler soon, but first we should ask ourselves, “When is the client going
to see this login page?” It’s clear she can browse to this login page directly, perhaps
following a link on the site’s front page. But what if she tries to access a protected
resource directly without first logging in? In that case, she should be redirected to

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

HTTP AUTHENTICATION 229

File Edit “iew Go Communicator
4 = A 4 2 £ S &
Back Forward Reload Home Search Guide Print Security Stop

" Bockmarks 4 Location: [keeps //Localhost: 6080/ Togin. iemd /||

Welcome! Please enter your Natne

and Password to log in,

Name:

OK |

Figure 8-2. A friendly login form

this login page and, after a successful login, be redirected back to the original tar-
get. The process should work as seamlessly as having the browser pop open a win-
dow—except in this case the site pops open an intermediary page.

Example 8-4 shows a servlet that implements this redirection behavior. It outputs
its secret data only if the client’s session object indicates she has already logged in.
If she hasn’t logged in, the servlet saves the request URL in her session for later
use, and then redirects her to the login page for validation.

Example 8-4. A protected resource

import java.io.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class ProtectedResource extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType ("text/plain") ;
PrintWriter out = res.getWriter();

// Get the session
HttpSession session = reqg.getSession(true);

Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

230 CHAPTER 8: SECURITY

Example 8-4. A protected resource (continued)

// Does the session indicate this user already logged in?
Object done = session.getValue("logon.isDone"); // marker object
if (done == null) {
// No logon.isDone means he hasn't logged in.
// Save the request URL as the true target and redirect to the login page.
session.putValue("login.target",
HttpUtils.getRequestURL (req) .toString()) ;
res.sendRedirect (reqg.getScheme() + "://" +
reqg.getServerName() + ":" + req.getServerPort() +
"/login.html") ;
return;

// If we get here, the user has logged in and can see the goods
out.println("Unpublished O'Reilly book manuscripts await you!");

}

This servlet sees if the client has already logged in by checking her session for an
object with the name "logon.isDone" . If such an object exists, the servlet
knows that the client has already logged in and therefore allows her to see the
secret goods. If it doesn’t exist, the client must not have logged in, so the servlet
saves the request URL under the name "login.target" , and then redirects the
client to the login page. Under form-based custom authorization, all protected
resources (or the servlets that serve them) have to implement this behavior. Sub-
classing, or the use of a utility class, can simplify this task.

Now for the login handler. After the client enters her information on the login
form, the data is posted to the LoginHandler servlet shown in Example 8-5. This
servlet checks the username and password for validity. If the client fails the check,
she is told that access is denied. If the client passes, that fact is recorded in her ses-
sion object and she is immediately redirected to the original target.

Example 8-5. Handling a login

import java.io.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class LoginHandler extends HttpServlet {

public void doPost (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType ("text/html") ;
PrintWriter out = res.getWriter();

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

HTTP AUTHENTICATION 231

Example 8-5. Handling a login (continued)

// Get the user's name and password
String name = req.getParameter ("name") ;
String passwd = req.getParameter ("passwd") ;

// Check the name and password for validity

if (!allowUser (name, passwd)) {
out.println ("<HTML><HEAD><TITLE>Access Denied</TITLE></HEAD>");
out.println("<BODY>Your login and password are invalid.
");
out.println("You may want to try again");
out.println("</BODY></HTML>") ;

}

else {
// Valid login. Make a note in the session object.
HttpSession session = req.getSession(true);
session.putValue("logon.isDone", name); // just a marker object

// Try redirecting the client to the page he first tried to access
try {
String target = (String) session.getValue("login.target");
if (target != null)
res.sendRedirect (target) ;
return;

}
catch (Exception ignored) { }

// Couldn't redirect to the target. Redirect to the site's home page.
res.sendRedirect (req.getScheme() + "://" +
reqg.getServerName() + ":" + req.getServerPort());

protected boolean allowUser (String user, String passwd) {
return true; // trust everyone

}

The actual validity check in this servlet is quite simple: it assumes any username
and password are valid. That keeps things simple, so we can concentrate on how
the servlet behaves when the login is successful. The servlet saves the user’s name
(any old object will do) in the client’s session under the name "logon.isDone"
as a marker that tells all protected resources this client is okay. It then redirects
the client to the original target saved as "login.target” , seamlessly sending
her where she wanted to go in the first place. If that fails for some reason, the serv-
let redirects the user to the site’s home page.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

232 CHAPTER 8: SECURITY

Digital Certificates

Real applications require a higher level of security than basic and digest authenti-
cation provide. They also need guaranteed confidentiality and integrity, as well as
more reliable authentication. Digital certificate technology provides this.

The key concept is public key cryptography. In a public key cryptographic system,
each participant has two keys that are used to encrypt or decrypt information. One
is the public key, which is distributed freely. The other is a private key, which is
kept secret. The keys are related, but one can not be derived from the other. To
demonstrate, assume Jason wants to send a secret message to Will. He finds Will’s
public key and uses it to encrypt the message. When Will gets the message, he uses
his private key to decrypt it. Anyone intercepting the message in transit is con-
fronted with indecipherable gibberish.

Public key encryption schemes have been around for several years and are quite
well developed. Most are based on the patented RSA algorithm developed by Ron
Rivest, Adi Shamir, and Leonard Adelman. RSA uses very large prime numbers to
generate a pair of asymmetric keys (i.e., each key can decode messages encoded
with the other). Individual keys come in varying lengths, usually expressed in
terms of the number of bits that make up the key. 1024- or 2048-bit keys are ade-
quate for secure RSA communications.

Because keys are so large, it is not practical for a user to type one into her web
brower for each request. Instead, keys are stored on disk in the form of digital cer-
tificates. Digital certificates can be generated by software like Phil Zimmerman’s
PGP package, or they can be issued by a third party. The certificate files them-
selves can be loaded by most security-aware applications, such as servers, browsers,
and email software.

Public key cryptography solves the confidentiality problem because the communi-
cation is encrypted. It also solves the integrity problem: Will knows that the mes-
sage he received was not tampered with since it decodes properly. So far, though, it
does not provide any authentication. Will has no idea whether Jason actually sent
the message. This is where digital signatures come into play. Because public and
private keys are asymmetric, Jason can first use his private key to encode a message
and then use Will’s public key to encode it again. When Will gets the message, he
decodes it first with his private key, and then with Jason’s public key. Because only
Jason can encode messages with his private key—messages that can be decoded
only with his public key—Will knows that the message was truly sent by Jason.

This is different from simpler symmetric key systems, where a single key is used
for encoding and decoding. While asymmetric keys have the significant advan-
tage of allowing secure communication without ever requiring a secure channel,
they have the disadvantage of requiring much more computational muscle. As a

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

DiGITAL CERTIFICATES 233

compromise, many encryption systems use asymmetric public and private keys to
identify each other and then confidentially exchange a separate symmetric key for
encrypting the actual exchange. The symmetric key is usually based on DES (Data
Encryption Standard).

U.S. government restrictions currently limit symmetric key size to 56 bits (about 72
quadrillion possible keys). Messages encrypted with a 56-bit key are difficult to
decode, but by no means impossible—large networks have been used to decode
such messages within a matter of days. With the United States, however, many sys-
tems use 128-bit DES keys (about 3.40282 x 10/38 possible keys). Because there is
no know way to decode a DES-encrypted message short of bruteforce trial and
error, messages sent using large keys are very, very secure.

This leaves one final problem—how does one user know that another user is who
she says she is? Jason and Will know each other, so Will trusts that the public key
Jason gave him in person is the real one.” On the other hand, if Lisa wants to give
Jason her public key, but Jason and Lisa have never met, there is no reason for
Jason to believe that Lisa is not actually Mark. But, if we assume that Will knows
Lisa, we can have Will use his private key to sign Lisa’s public key. Then, when
Jason gets the key, he can detect that Will, whom he trusts, is willing to vouch for
Lisa’s identity. These introductions are sometimes called a “web of trust.”

In the real world, this third-party vouching is usually handled by a specially estab-
lished certificate authority, such as VeriSign Corporation. Because VeriSign is a
well-known organization with a well-known public key, keys verified and signed by
VeriSign can be assumed to be trusted, at least to the extent that VeriSign received
proper proof of the receiver’s identity. VeriSign offers a number of classes of digi-
tal IDs, each with an increasing level of trust. You can get a Class 1 ID by simply fill-
ing out a form on the VeriSign web site and receiving an email. Higher classes are
individually verified by VeriSign employees, using background checks and investi-
gative services to verify identities.

When selecting a certificate authority, it is important to choose a firm with strong
market presence. VeriSign certificates, for instance, are included in Netscape Navi-
gator and Microsoft Internet Explorer, so virtually every user on the Internet will
trust and accept them. The following firms provide certificate authority services:

® VeriSign (http://www.verisign.com/)
¢ Thawte Consulting (http://www.thawte.com/)
e Entrust Technologies (http://www.entrust.com/)

e Keywitness (http://www.keywitness.ca/)

* To be truthful, people almost never meet in dark alleys to exchange their full public keys. Instead,
they exchange keys digitally (via email, perhaps) and in person simply compare a small fingerprint
hash of the key.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

234 CHAPTER 8: SECURITY

For more abstract information about digital certificates, we recommend Under-
standing Digital Signatures by Gail L. Grant (Mc-Graw Hill), which provides an
excellent introduction to the subject suitable for programmers and nonprogram-
mers alike. For more on cryptography as it is related to Java, we recommend Java

Cryptography by Jonathan Knudsen (O’Reilly).

Secure Sockets Layer (SSL)

The Secure Sockets Layer protocol, or SSL, sits between the application-level proto-
col (in this case HTTP) and the low-level transport protocol (for the Internet,
almost exclusively TCP/IP). It handles the details of security management using
public key cryptography to encrypt all client/server communication. SSL was intro-
duced by Netscape with Netscape Navigator 1. It has since become the de facto
standard for secure online communications and forms the basis of the Transport
Layer Security (TLS) protocol currently under development by the Internet Engi-
neering Task Force. For more information on TLS, see http://www.ietf. org/ietf-tls.

SSL Version 2.0, the version first to gain widespread acceptance, includes support
for server certificates only. It provides authentication of the server, confidentiality,
and integrity. Here’s how it works:

1. A user connects to a secure site using the HTTPS (HTTP plus SSL) protocol.
(You can detect sites using the HTTPS protocol because their URLs begin
with https: instead of hitp:.)

2. The server signs its public key with its private key and sends it back to the
browser.

3. The browser uses the server’s public key to verify that the same person who
signed the key actually owns it.

4. The browser checks to see whether a trusted certificate authority signed the
key. If one didn’t, the browser asks the user if the key can be trusted and
proceeds as directed.

5. The client generates a symmetric (DES) key for the session, which is encrypted
with the server’s public key and sent back to the server. This new key is used to
encrypt all subsequent transactions. The symmetric key is used because of the
high computational cost of public key cryptosystems.

All this is completely transparent to servlets and servlet developers. You just need
to obtain an appropriate server certificate, install it, and configure your server
appropriately. Information transferred between servlets and clients is now
encrypted. Voila, security!

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SECURE SOCKETS LAYER (SSL) 235

SSL Client Authentication

Our security toolbox now includes strong encryption and strong server authentica-
tion, but only weak client authentication. Of course, using SSL 2.0 puts us in bet-
ter shape because SSL-equipped servers can use the basic authentication methods
discussed at the beginning of this chapter without concern for eavesdropping. We
still don’t have proof of client identity, however—after all, anybody could have
guessed or gotten a hold of a client username and password.

SSL 3.0 fixes this problem by providing support for client certificates. These are
the same type of certificates that servers use, but they are registered to clients
instead. As of this writing, VeriSign claims to have distributed more than 750,000
client certificates. SSL 3.0 with client authentication works the same way as SSL 2.
0, except that after the client has authenticated the server, the server requests the
client’s certificate. The client then sends its signed certificate, and the server per-
forms the same authentication process as the client did, comparing the client cer-
tificate to a library of existing certificates (or simply storing the certificate to iden-
tify the user on a return visit). As a security precaution, many browsers require the
client user to enter a password before they will send the certificate.

Once a client has been authenticated, the server can allow access to protected
resources such as servlets or files just as with HTTP authentication. The whole pro-
cess occurs transparently, without inconveniencing the user. It also provides an
extra level of authentication because the server knows the client with a John Smith
certificate really is John Smith (and it can know which John Smith it is by reading
his unique certificate). The disadvantages of client certificates are that users must
obtain and install signed certificates, servers must maintain a database of all
accepted public keys, and servers must support SSL 3.0 in the first place. As of this
writing, most do, including the Java Web Server.

Retrieving SSL Authentication Information

As with basic and digest authentication, all of this communication is transparent to
servlets. It is sometimes possible, though, for a servlet to retrieve the relevant SSL
authentication information. The java.security package has some basic support
for manipulating digital certificates and signatures. To retrieve a client’s digital infor-
mation, however, a servlet has to rely on a serverspecific implementation of the
request’s getAttribute() method. Example 8-6 (reprinted from Chapter 4) shows
how to use getAttribute() to fetch the details of a client’s certificates. Remember
that this works only for the Java Web Server. Other servlet implementations, if they

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

236 CHAPTER 8: SECURITY

include this functionality at all, are likely to do it in a slightly different way, although
we hope that they build on Java’s standard signature support.

Example 8-6. Examining client certificates

import javax.security.cert.X509Certificate;
out.println("<PRE>");

// Display the cipher suite in use
String cipherSuite =

(String) req.getAttribute("javax.net.ssl.cipher_suite");
out.println("Cipher Suite: " + cipherSuite);

// Display the client's certificates, if there are any
if (cipherSuite != null) {
X509Certificate certChain[] =
(X509Certificate[]) reg.getAttribute("javax.net.ssl.peer_certificates");
if (certChain != null) {
for (int i = 0; i < certChain.length; i++) {
out.println ("Client Certificate [" + i + "] ="
+ certChain[i].toString());

}
out.println("</PRE>");

Here’s the output we first saw in Chapter 4:

Cipher Suite: SSIL_RSA_EXPORT WITH RC4_40_MD5
Client Certificate [0] = [

X.509v3 certificate,

Subject is OID.1.2.840.113549.1.9.1=#160F6A68756E746572407367692E636F6D,
CN=Jason Hunter, OU=Digital ID Class 1 - Netscape,
OU="www.verisign.com/repository/CPS Incorp. by Ref.,LIAB.LTD(c)96",
OU=VeriSign Class 1 CA - Individual Subscriber, O="VeriSign, Inc.", L=Internet

Key: algorithm = [RSA], exponent = 0x 010001, modulus =

b35ed5e7 45£c5328 e3f5ce70 838cc25d 0alefddl df4d3elb 64£70617 528546¢8
faed6995 9922a093 7a54584d d466bee7 e7b5c259 c7827489 6478ela9 3al6d4AsSE

Validity wuntil

Issuer is OU=VeriSign Class 1 CA - Individual Subscriber, O="VeriSign, Inc.",
L=Internet

Issuer signature used [MD5withRSA]

Serial number = 20556dc0 9e31dfad ada6elOd 77954704
]

Client Certificate [1] = [
X.509v3 certificate,
Subject is OU=VeriSign Class 1 CA - Individual Subscriber, O="VeriSign,

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

RUNNING SERVLETS SECURELY 237

Inc.", L=Internet
Key: algorithm = [RSA], exponent = 0x 010001, modulus =
b6ldabcf 4dd0050d d8ca23d0 6faabd29 92638e2c £86£96d7 2e9d764b 11b1368d
57c9c3fd lccébafe 1e08ba33 ca95eabe e35bcd06 a8b7791d 442aed73 £2b15283
68107064 91d73e6b £9£75d9d 14439b6e 97459881 47d12dcb ddbb72d7 4c3f7laa
e240£f254 39bcl6ee cf7cecba db3f6c2a b316b186 129dae93 34d5b8d5 d0f73ead
Validity wuntil
Issuer is OU=Class 1 Public Primary Certification Authority, O="VeriSign,

Inc.", C=US
Issuer signature used [MD2withRSA]
Serial number = 521£351d £2707e00 2bbeca59 87044539

1

The first certificate is the user’s public key. The second is VeriSign’s signature that
vouches for the authenticity of the first signature. Of course, the information from
these certificate chains isn’t particularly useful to the application programmer. In
some applications, it is safe to simply assume that a user is authorized if she got
past the SSL authentication phase. For others, the certificates can be picked apart
using the javax.security.cert.X509Certificate class. More commonly,
a web server allows you to assign a username to each certificate you tell it to
accept. Servlets can then call getRemoteUser() to get a unique username. The
latter solution works with almost all web servers.

Running Servlets Securely

CGI programs and C++-based plug-ins operate with relatively unfettered access to
the server machine on which they execute (limited on Unix machines by the user
account permissions of the web server process). This isn’t so bad for an isolated
programmer developing for a single web server, but it’s a security nightmare for
internet service providers (ISPs), corporations, schools, and everyone else run-
ning shared web servers.

For these sites, the problem isn’t just protecting the server from malicious CGI
programmers. The more troublesome problem is protecting from careless CGI pro-
grammers. There are dozens of well-known CGI programming mistakes that could
let a malicious client gain unauthorized access to the server machine. One innocu-
ous-looking but poorly written Perl eval function is all it takes. For an extensive
list of CGI security gotchas, see Chapter 6 of The WWW Security FAQ at http://
www.w3.0rg/Security/Faq/www-security-faq. html.

To better understand the situation, imagine you’re an ISP and want to give your
customers the ability to generate dynamic content using CGI programs. What can
you do to protect yourself? Historically, ISPs have chosen one of three options:

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

238 CHAPTER 8: SECURITY

Have blind faith in the customer.
He’s a good guy and a smart programmer, and besides, we have his credit card
number.

Educate the customer.
If he reads the WWW Security FAQ and passes a written test, we’ll let him write
CGI programs for our server.

Review all code.
Before we install any CGI program on the server, we’ll have our expert review
it and scan for security problems.

None of these approaches work very well. Having blind faith is just asking for trou-
ble. Programmer education helps, but programmers are human and bound to
make mistakes. As for code review, there’s still no guarantees, plus it takes time
and costs money to do the extra work.

Fortunately, with servlets there’s another, better solution. Because servlets are writ-
ten in Java, they can be forced to follow the rules of a security manager (or access
controller with JDK 1.2) to greatly limit the server’s exposure to risk, all with a
minimal amount of human effort.

The Servlet Sandbox

Servlets built using JDK 1.1 generally operate with a security model called the
“servlet sandbox.” Under this model, servlets are either trusted and given open
access to the server machine, or they’re untrusted and have their access limited by
a restrictive security manager. The model is very similar to the “applet sandbox,”
where untrusted applet code has limited access to the client machine.

What'’s a security manager? It’s a class subclassed from java.lang.Security-
Manager that is loaded by the Java environment to monitor all security-related
operations: opening network connections, reading and writing files, exiting the
program, and so on. Whenever an application, applet, or servlet performs an
action that could cause a potential security breach, the environment queries the
security manager to check its permissions. For a normal Java application, there is
no security manager. When a web browser loads an untrusted applet over the net-
work, however, it loads a very restrictive security manager before allowing the
applet to execute.

Servlets can use the same technology, if the web server implements it. Local serv-
lets can be trusted to run without a security manager, or with a fairly lenient one.
For the Java Web Server 1.1, this is what happens when servlets are placed in the
default servlet directory or another local source. Servlets loaded from a remote
source, on the other hand, are by nature suspect and untrusted, so the Java Web

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

RUNNING SERVLETS SECURELY 239

Server forces them to run in a very restrictive environment where they can’t access
the local file system, establish network connections, and so on.* All this logic is
contained within the server and is invisible to the servlet, except that the servlet
may see a SecurityException thrown when it tries to access a restricted
resource. The servlet sandbox is a simple model, but it is already more potent than
any other server extension technology to date.

Using digital signatures, it is possible for remotely loaded servlets to be trusted just
like local servlets. Third-party servlets are often packaged using the Java Archive
(JAR) file format. A JAR file collects a group of class files and other resources into
a single archive for easy maintenance and fast download. Another nice feature of
JAR files that is useful to servlets is that they can be digitally signed. This means
that anyone with the public key for “Crazy Al’s Servlet Shack” can verify that her
copy of Al’'s Guestbook Servlet actually came from Al. On some servers, including
the Java Web Server, these authenticated servlets can then be trusted and given
extended access to the system.t

Fine-grained Control

This all-or-nothing approach to servlet permissions is useful, but it can be overly
limiting. Consequently, some servlet engines have begun to explore a more fine-
grained protection of server resources—for example, allowing a specific servlet to
establish a network connection but not write to the server’s file system. This fine-
grained control is fairly awkward using the JDK 1.1 notion of a SecurityMan-
ager class and, therefore, isn’t widely implemented, although it can be done, as
the Java Web Server 1.1 proves.

The Java Web Server 1.1 includes eight permissions that can be granted to servlets:

Load servlet
Let the servlet load a named servlet.
Write files
Let the servlet write any file on the local file system.

Listen to socket
Allow the servlet to accept incoming socket (network) connections.

Link libraries
Allow the loading of native libraries, such as the JDBC-ODBC bridge.

* If you want a local servlet run in the restrictive environment, a workaround is to place them in your
server's document root (such as server _root /public_html) and configure the server load them re-
motely from the same server.

T You can create your owned signed servlets using a certificate generated by the JDK’s key management
tools (javakey in JDK 1.1 or keytool and jarsignerin JDK 1.2). Alternately, you can obtain signed certifi-
cates from VeriSign or another certificate authority.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

240 CHAPTER 8: SECURITY

Read files
Let the servlet read any file on the local file system.

Open remote socket
Allow the servlet to connect to an external host.

Execute programs
Permit the servlet to execute external programs on the server. This is useful
for servlets that absolutely require access to some system utilities, but it is very
dangerous: rm and del qualify as an external programs!

Access system properties
Grant access to java.lang.System properties.

A screen shot of the Administration Tool configuration page that assigns these
permissions is shown in Figure 8-3.

File Edit View Go Bookmarks Options Directory Window

Load Images|[Ope

Location: | http://1ocalhost:3838/

Setup | Monitor | Security | Serviets Help

5 Security Reame servietMgrRealm
- Users
- Groups Access Control Lists (ACLs) |
Accass Control Lists | | sevletd
Resources i
Services =
Bssign Permissions for: & Files and Folders & Serviats
€ Java Web Server
Bl ab Sarvice Grantto: @ User & Group Principal/Parmissions Allowed? |[H
+- @ Secure Web Serv =
i =Y PFDXV Service F‘rmc\pa\ Narme n Users
adin admin
wasigned - unsigned :
© Groups S
- @ Cormputers
Fermissions are: & Allowed <& Denie
Permissions: [Load serviel [~ Read files =
[Wite files [Open remote socket S| [0
[Listen fo socket (@ Execute programs . - -
[Link libraries [~ Access system properties
| ok I ‘ Apply I | Clear I ‘ Cancel I | Help I
a Applet Window
M-WE' [HelUnsigned Java Applet Window

Figure 8-3. Eight permissions

Theoretically, any criterion can be used to determine what a servlet can or cannot
do. It’s possible for the security manager to base its permission-granting decision
on any factor, including these:

The servlet itself

For example, this servlet can read files and load native libraries but cannot
write files.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

RUNNING SERVLETS SECURELY 241

The client user
For instance, any servlet responding to a request from this client user can
write files.

The client host
For example, any servlet responding to a request from this machine can estab-
lish network connections.

Digital signatures
For instance, any servlet in a JAR file signed by this entity has full reign on the
SErver system.

Access Controllers

JDK 1.2 introduces a new extension to the security manager system: the access con-
troller. The new architecture is quite similar to the “give particular servlets particu-
lar privileges” approach implemented by the Java Web Server 1.1, except that it
applies to all JDK 1.2 programs and therefore makes fine-grained permission
implementations much easier.

An access controller allows what might be called super-fine-grained permission
control. Instead of granting a servlet the general ability to write files, with an
access controller a servlet can be given the right to write to a single file—perfect
for a counter servlet, for example. Or it can be given the right to read and write
files only in the client user’s home directory on the server—appropriate for a cli-
ent/server application. With access controllers, servlets can be given the rights to
do exactly what they need to do and nothing more.

Access controllers work by placing individual pieces of code, often identified by
digital signatures, into particular virtual domains. Classes in these domains can be
granted fine-grained permissions, such as the ability to read from the server’s doc-
ument root, write to a temporary directory, and accept socket connections. All per-
mission policy decisions are managed by a single instance of the java.secu-
rity.AccessController class. This class bases its policy decisions on a simple
configuration file, easily managed using a graphical user interface.

Now, instead of relying on complicated custom security managers as the Java Web
Server team had to do, a servlet engine need only add a few lines of code to use an
access controller. So, while the Java Web Server is the only servlet implementation
supporting fine-grained security as of early 1998, once JDK 1.2 becomes popular, it
should be easy for other servlet engine implementers to add the same level of fine-
grained access control. These implementations may already be available by the
time you read this.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

In this chapter:

* Relational Databases

* The JDBC API

* Reusing Database
Objects

* Transactions

* Advanced JDBC

Techniques

Database Connectivity

It’s hard to find a professional web site today that doesn’t have some sort of data-
base connectivity. Webmasters have hooked online front ends to all manner of
legacy systems, including package tracking and directory databases, as well as many
newer systems like online messaging, storefronts, and search engines. But web-
database interaction comes with a price: database-backed web sites can be difficult
to develop and can often exact heavy performance penalties. Still, for many web
sites, especially intranet applications, database connectivity is just too useful to let
go. More and more, databases are driving the Web.

This chapter introduces relational databases, the Structured Query Language
(SQL) used to manipulate those databases, and the Java database connectivity
(JDBC) APl itself. Servlets, with their enduring life cycle, and JDBC, a well-defined
database-independent database connectivity API, are an elegant and efficient solu-
tion for webmasters who need to hook their web sites to back-end databases. In
fact, both of your authors started working with servlets specifically because of this
efficiency and elegance. Although elsewhere in the book we have assumed that
you are familiar with Java, this chapter breaks that assumption and begins with a
quick course in JDBC.

The biggest advantage for servlets with regard to database connectivity is that the
servlet life cycle (explained in depth in Chapter 3, The Servlet Life Cycle) allows serv-
lets to maintain open database connections. An existing connection can trim
several seconds from a response time, compared to a CGI script that has to rees-
tablish its connection for every invocation. Exactly how to maintain the database
connection depends on the task at hand, and this chapter demonstrates several
techniques appropriate for different tasks.

Another advantage of servlets over CGI and many other technologies is that JDBC
is database-independent. A servlet written to access a Sybase database can, with a

242
Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

RELATIONAL DATABASES 243

two-line modification or a change in a properties file, begin accessing an Oracle
database (assuming none of the database calls it makes are vendor-specific). In
fact, you should notice that the examples in this chapter are written to access a
variety of different databases, including ODBC data sources (such as Microsoft
Access), Oracle, and Sybase.

Relational Databases

In some earlier examples, we’ve seen servlets that used file storage on the local
disk to store their persistent data. The use of a flat file is fine for a small amount of
data, but it can quickly get out of control. As the amount of data grows, access
times slow to a crawl. And just finding data can become quite a challenge: imagine
storing the names, cities, and email addresses of all your customers in a text file. It
works great for a company that is just starting out, but what happens when you
have hundreds of thousands of customers and want to display a list of all your
customers in Boston with email addresses ending in “aol.com”?

One of the best solutions to this problem is a Relational Database Management
System (RDBMS). At the most basic level, an RDBMS organizes data into tables.
These tables are organized into rows and columns, much like a spreadsheet.
Particular rows and columns in a table can be related (hence the term “rela-
tional”) to one or more rows and columns in another table.

One table in a relational database might contain information about customers,
another might contain orders, and a third might contain information about indi-
vidual items within an order. By including unique identifiers (say, customer
numbers and order numbers), orders from the orders table can be linked to
customer records and individual order components. Figure 9-1 shows how this
might look if we drew it out on paper.

Data in the tables can be read, updated, appended, and deleted using the Struc-
tured Query Language, or SQL, sometimes also referred to as the Standard Query
Language. Java’s JDBC API introduced in JDK 1.1 uses a specific subset of SQL
known as ANSI SQL-2 Entry Level. Unlike most programming languages, SQL is
declarative: you say what you want, and the SQL interpreter gives it to you. Other
languages, like C, C++, and Java, by contrast, are essentially procedural, in that you
specify the steps required to perform a certain task. SQL, while not prohibitively
complex, is also rather too broad a subject to cover in great (or, indeed, merely
adequate) detail here. In order to make the rest of the examples in this chapter
comprehensible, though, here’s a brief tutorial.

The simplest and most common SQL expression is the SELECT statement, which
queries the database and returns a set of rows that matches a set of search criteria.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

244 CHAPTER 9: DATABASE CONNECTIVITY

Servlets in the Middle Tier

One common place for servlets, especially servlets that access a database, is in
what’s called the middle tier. A middle tier is something that helps connect
one endpoint to another (an applet to a database, for example) and along the
way adds a little something of its own.

The most compelling reason for putting a middle tier between a client and our
ultimate date source is that software in the middle tier (commonly referred to
as middleware) can include business logic. Business logic abstracts complicat-
ed low-level tasks (such as updating database tables) into high-level tasks (plac-
ing and order), making the whole operation simpler and safer.

Imagine a client application that places an order. Without middleware, the ap-
plication has to connect directly to the database server that stores the order
records and then change the database fields to reflect the order. If the data-
base server changes in any way (by moving to a different machine, altering its
internal table structure, or changing database vendors), the client may break.
Even worse, if someone makes a minor change to the client (either intention-
ally or accidentally), it’s possible for the database to record orders without first
receiving payment or to reject perfectly valid entries.

Middleware uses business logic to abstract the ordering process. Middleware
accepts information about the order (for example, name, address, item, quan-
tity, credit card number), sanity-checks the information, verifies that the credit
card is valid, and enters the information into the database. Should the data-
base change, the middleware can be updated without any changes in the cli-
ent. Even if the orders database is temporarily replaced with a simple flat file
order log, the middleware can present the same appearance to the client.

Middleware can improve efficiency by spreading the processing load across
several back-end servers (CPU servers, database servers, file servers, directory
servers, etc.). Middleware can also make more efficient use of bandwidth: in-
stead of having a client perform the back-and-forth communication with the
server over what might be a slow network connection, the client can tell the
middleware what it needs and the middleware can do the work using a fast net-
work connection and probably pooled database connections.

On the Web, middle tiers are often implemented using servlets. Servlets pro-
vide a convenient way to connect clients built using HTML forms or applets to
back-end servers. A client communicates its requirements to the servlet using
HTTP, and the business logic in the servlet handles the request by connecting
to the back-end server. (More information on applet-servlet communication is
coming up in Chapter 10, Applet-Servlet Communication.)

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

RELATIONAL DATABASES

245

Servlets sometimes use another middle tier to connect to a database. If a web
browser sends an HTML form with order information to a servlet, that servlet
may parse the information and make an RMI call to middleware on another
machine that has the responsibility for handling all orders—from servlets as
well as standalone programs. In these cases, what was once three tiers is now

four tiers.
CUSTOMERS Table ORDERS Table [TEMS Table
o 0| _we_| D
1 Bob Copier {617 555-1212 1 4 48.03 2 4012 [12.05
2 Jane Stapler 617 555-1213 I 2 6 16.27 2 6719 | 4.22
I 3 7 531 3 603 5.31
4 1 72.19 4 1280 |16.72
5 3 53.17 E 4 4129 [41.10
(] 1 21.07 4 3017 |14.37
7 5 37.62 5 1280 [16.72
5 9246 |17.21

Figure 9-1. Related tables

For example, the following SELECT

CUSTOMERS table:

SELECT * FROM CUSTOMERS

statement selects everything from the

SQL keywords like SELECT and FROM and objects like CUSTOMERS are case insensi-
tive but frequently written in uppercase. When run in Oracle’s SQL*PLUS SQL
interpreter, this query would produce something like the following output:

CUSTOMER_ID NAME

Bob Copier

Janet Stapler

1
2
3 Joel Laptop
4

Larry Coffee

617 555-1212
617 555-1213
508 555-7171
212 555-6525

More advanced statements might restrict the query to particular columns or

include some specific limiting criteria:

SELECT ORDER_ID, CUSTOMER_ID, TOTAL FROM ORDERS
WHERE ORDER_ID = 4

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

246 CHAPTER 9: DATABASE CONNECTIVITY

This statement selects the ORDER_ID, CUSTOMER_ID, and TOTAL columns from all
records where the ORDER_ID field is equal to 4. Here’s a possible result:

ORDER_ID CUSTOMER_ID TOTAL

A SELECT statement can also link two or more tables based on the values of partic-
ular fields. This can be either a one-to-one relationship or, more typically, a one-
to-many relation, such as one customer to several orders:

SELECT CUSTOMERS.NAME, ORDERS.TOTAL FROM CUSTOMERS, ORDERS
WHERE ORDERS.CUSTOMER_ID = CUSTOMERS.CUSTOMER_ID AND ORDERS.
ORDER_ID = 4

This statement connects (or, in database parlance, joins) the CUSTOMERS table
with the ORDERS table via the CUSTOMER_ID field. Note that both tables have this
field. The query returns information from both tables: the name of the customer
who made order 4 and the total cost of that order. Here’s some possible output:

Bob Copier 72.19
SQL is also used to update the database. For example:

INSERT INTO CUSTOMERS (CUSTOMER_ID, NAME, PHONE)

VALUES (5, "Bob Smith", "555 123-3456")
UPDATE CUSTOMERS SET NAME = "Robert Copier" WHERE CUSTOMER_ID = 1
DELETE FROM CUSTOMERS WHERE CUSTOMER_ID = 2

The first statement creates a new record in the CUSTOMERS table, filling in the
CUSTOMER_ID, NAME, and PHONE fields with certain values. The second updates an
existing record, changing the value of the NAME field for a specific customer. The
last deletes any records with a CUSTOMER_ID of 2. Be very careful with all of these
statements, especially DELETE. A DELETE statement without a WHERE clause will
remove all the records in the table!

For a good primer on relational databases and SQL, we recommend SQL for
Dummies, by Allen G. Taylor (IDG Books Worldwide).

The JDBC API

Previously, we’ve assumed that you have a general working knowledge of the
various Java APIs. Because even experienced Java programmers may have had rela-
tively little experience with databases, this section provides a general introduction
to JDBC. If this is your first foray into the world of databases, we strongly recom-
mend that you take a breather and find a book on general database and JDBC

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE JDBC API 247

concepts. You may want to read Database Programming with [DBC and Java, by
George Reese (O’Reilly), or [DBC Database Access with Java, by Graham Hamilton,
Rick Cattell, and Maydene Fisher (Addison-Wesley). The official JDBC specifica-
tion is also available online at hAttp://java.sun.com/products/jdbe.

JDBC is a SQL-level API—one that allows you to execute SQL statements and
retrieve the results, if any. The API itself is a set of interfaces and classes designed
to perform actions against any database. Figure 9-2 shows how JDBC programs
interact with databases.

ResultSet
Statement

ResultSet
PreparedStatement

JDBC-0DBC
Bridge

CallableStatement

Application

Oracle Driver
Oracl
Databa

Figure 9-2. Java and the database

Sybase Driver

Sybas
Dutubum I‘

0DBC Driver

0DB
Dutubguw I“

JDBC Drivers

The JDBC API, found in the java.sqgl package, contains only a few concrete
classes. Much of the API is distributed as database-neutral interface classes that
specify behavior without providing any implementation. The actual implementa-
tions are provided by third-party vendors.

An individual database system is accessed via a specific JDBC driver that imple-
ments the java.sqgl.Driver interface. Drivers exist for nearly all popular
RDBMS systems, though few are available for free. Sun bundles a free JDBC-ODBC
bridge driver with the JDK to allow access to standard ODBC data sources, such as
a Microsoft Access database. However, Sun advises against using the bridge driver

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

248 CHAPTER 9: DATABASE CONNECTIVITY

for anything other than development and very limited deployment. Servlet devel-
opers in particular should heed this warning because any problem in the JDBC-
ODBC bridge driver’s native code section can crash the entire server, not just your
servlets.

JDBC drivers are available for most database platforms, from a number of vendors
and in a number of different flavors. There are four driver categories:

Type 1-]DBC-ODBC Bridge Driver
Type 1 drivers use a bridge technology to connect a Java client to an ODBC
database service. Sun’s JDBC-ODBC bridge is the most common Type 1 driver.
These drivers are implemented using native code.

Type 2-Native-API Partly-Java Driver

Type 2 drivers wrap a thin layer of Java around database-specific native code
libraries. For Oracle databases, the native code libraries might be based on the
OCI (Oracle Call Interface) libraries, which were originally designed for G/
C++ programmers. Because Type 2 drivers are implemented using native code,
in some cases they have better performance than their all-Java counterparts.
They add an element of risk, however, because a defect in a driver’s native
code section can crash the entire server.

Type 3-Net-Protocol All-Java Driver
Type 3 drivers communicate via a generic network protocol to a piece of
custom middleware. The middleware component might use any type of driver
to provide the actual database access. WebLogic’s Tengah product line is an
example. These drivers are all Java, which makes them useful for applet
deployment and safe for servlet deployment.

Type 4-Native-Protocol All-Java Driver
Type 4 drivers are the most direct of the lot. Written entirely in Java, Type 4
drivers understand database-specific networking protocols and can access the
database directly without any additional software.

A list of currently available JDBC drivers can be found at http://java.sun.com/
products/jdbc/jdbc. drivers. html.

Getting a Connection

The first step in using a JDBC driver to get a database connection involves loading
the specific driver class into the application’s JVM. This makes the driver available
later, when we need it for opening the connection. An easy way to load the driver
class is to use the Class. forName () method:

Class. forName ("sun. jdbc.odbc.JdbcOdbcDriver") ;

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE JDBC API 249

When the driver is loaded into memory, it registers itself with the java.sql.
DriverManager class as an available database driver.

The next step is to ask the DriverManager class to open a connection to a given
database, where the database is specified by a specially formatted URL. The
method used to open the connection is DriverManager.getConnection (). It
returns a class that implements the java.sgl .Connection interface:

Connection con =
DriverManager .getConnection ("jdbc:odbc:somedb", "user", "passwd");

A JDBC URL identifies an individual database in a driver-specific manner.
Different drivers may need different information in the URL to specify the host
database. JDBC URLs usually begin with jdbc:subprotocol:subname. For example,
the Oracle JDBC-Thin driver uses a URL of the form of
jdbe:oracle:thin:@dbhost:port:sid; the JDBC-ODBC bridge uses jdbc:odbe:data-
sourcename;odbcoptions.

During the call to getConnection(), the DriverManager object asks each regis-
tered driver if it recognizes the URL. If a driver says yes, the driver manager uses
that driver to create the Connection object. Here is a snippet of code a servlet
might use to load its database driver with the J]DBC-ODBC bridge and create an
initial connection:

Connection con = null;

try {
// Load (and therefore register) the JDBC-ODBC Bridge
// Might throw a ClassNotFoundException
Class.forName ("sun. jdbc.odbc.JdbcOdbcDriver") ;

// Get a connection to the database
// Might throw an SQLException
con = DriverManager.getConnection ("jdbc:odbc:somedb", "user", "passwd");

// The rest of the code goes here.
}
catch (ClassNotFoundException e) {
// Handle an error loading the driver
}
catch (SQLException e) {
// Handle an error getting the connection

}

finally {
// Close the Connection to release the database resources immediately.
try {
if (con != null) con.close();

}
catch (SQLException ignored) { }

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

250 CHAPTER 9: DATABASE CONNECTIVITY

Executing SQL Queries

To really use a database, we need to have some way to execute queries. The
simplest way to execute a query is to use the Jjava.sqgl.Statement class.
Statement objects are never instantiated directly; instead, a program calls the
createStatement () method of Connection to obtain a new Statement object:

Statement stmt = con.createStatement () ;

A query that returns data can be executed using the executeQuery () method of
Statement. This method executes the statement and returns a java.sqgl.
ResultSet that encapsulates the retrieved data:

ResultSet rs = stmt.executeQuery ("SELECT * FROM CUSTOMERS") ;

You can think of a ResultSet object as a representation of the query result
returned one row at a time. You use the next () method of ResultSet to move
from row to row. The ResultSet interface also boasts a multitude of methods
designed for retrieving data from the current row. The getString() and
getObject () methods are among the most frequently used for retrieving column
values:

while(rs.next()) {

String event = rs.getString("event");

Object count = (Integer) rs.getObject("count");
}

You should know that the ResultSet is linked to its parent Statement. There-
fore, if a Statement is closed or used to execute another query, any related
ResultSet objects are closed automatically.

Example 9-1 shows a very simple servlet that uses the Oracle JDBC driver to
perform a simple query, printing names and phone numbers for all employees
listed in a database table. We assume that the database contains a table named
EMPLOYEES, with at least two fields, NAME and PHONE.

Example 9-1. A J]DBC-enabled servlet

import java.io.*;

import java.sql.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class DBPhoneLookup extends HttpServlet ({

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
Connection con = null;
Statement stmt = null;

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE JDBC API 251

Example 9-1. A JDBC-enabled servlet (continued)

ResultSet rs = null;

res.setContentType ("text/html") ;
PrintWriter out = res.getWriter();

try {
// Load (and therefore register) the Oracle Driver
Class.forName ("oracle.jdbc.driver.OracleDriver") ;

// Get a Connection to the database
con = DriverManager.getConnection (
"jdbc:oracle:thin:dbhost:1528:0RCL", "user", "passwd");

// Create a Statement object
stmt = con.createStatement () ;

// Execute an SQL query, get a ResultSet
rs = stmt.executeQuery ("SELECT NAME, PHONE FROM EMPLOYEES") ;

// Display the result set as a list
out.println ("<HTML><HEAD><TITLE>Phonebook</TITLE></HEAD>") ;
out.println("<BODY>") ;
out.println("") ;
while(rs.next()) {
out.println("" + rs.getString("name") + " " + rs.getString("phone"));
}
out.println("");
out.println("</BODY></HTML>") ;
}
catch (ClassNotFoundException e) {
out.println("Couldn't load database driver: " + e.getMessage());
}
catch (SQLException e) {
out.println("SQLException caught: " + e.getMessage()):
}
finally {
// Always close the database connection.
try {
if (con != null) con.close();
}
catch (SQLException ignored) { }

}

This is about as simple a database servlet as you are likely to see. All
DBPhoneLookup does is connect to the database, run a query that retrieves the

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

252 CHAPTER 9: DATABASE CONNECTIVITY

names and phone numbers of everyone in the employees table, and display the list
to the user.

Handling SQL Exceptions

DBPhoneLookup encloses most of its code in a try/catch block. This block
catches two exceptions: ClassNotFoundException and SQLException. The
former is thrown by the Class.forName () method when the JDBC driver class
can not be loaded. The latter is thrown by any JDBC method that has a problem.
SQLException objects are just like any other exception type, with the additional
feature that they can chain. The SQLException class defines an extra method,
getNextException(), that allows the exception to encapsulate additional
Exception objects. We didn’t bother with this feature in the previous example,
but here’s how to use it:

catch (SQLException e) {
out.println(e.getMessage());
while((e = e.getNextException()) != null) {
out.println(e.getMessage()) ;

}

This code displays the message from the first exception and then loops through all
the remaining exceptions, outputting the error message associated with each one.
In practice, the first exception will generally include the most relevant
information.

Result Sets in Detail

Before we continue, we should take a closer look at the ResultSet interface and
the related ResultSetMetaData interface. In Example 9-1, we knew what our
query looked like, and we knew what we expected to get back, so we formatted the
output appropriately. But, if we want to display the results of a query in an HTML
table, it would nice to have some Java code that builds the table automatically from
the ResultSet rather than having to write the same loop-and-display code over
and over. As an added bonus, this kind of code makes it possible to change the
contents of the table simply by changing the query.

The ResultSetMetaData interface provides a way for a program to learn about
the underlying structure of a query result on the fly. We can use it to build an
object that dynamically generates an HTML table from a ResultSet, as shown in

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE JDBC API 253

Example 9-2. Many Java HTML generation tools (such as WebLogic’s htmlKona
toolkit discussed in Chapter 5, Sending HTML Information) have a similar capability.

Example 9-2. A class to generate an HTML table from a ResultSet using ResultSetMetaData

import java.sql.*;
public class HtmlResultSet {
private ResultSet rs;

public HtmlResultSet (ResultSet rs) {
this.rs = rs;

public String toString() { // can be called at most once
StringBuffer out = new StringBuffer();
// Start a table to display the result set
out.append ("<TABLE>\n") ;

try {
ResultSetMetaData rsmd = rs.getMetaDatal() ;

int numcols = rsmd.getColumnCount () ;

// Title the table with the result set's column labels
out.append ("<TR>") ;
for (int i = 1; i <= numcols; i++) {
out.append ("<TH>" + rsmd.getColumnLabel (i));
}
out.append ("</TR>\n") ;

while(rs.next()) {
out.append ("<TR>"); // start a new row
for (int i = 1; i <= numcols; i++) {
out.append ("<TD>"); // start a new data element
Object obj = rs.getObject(i);
if (obj != null)
out.append (obj.toString()) ;
else
out.append (" ") ;
}
out.append("</TR>\n") ;

// End the table
out.append ("</TABLE>\n") ;
}
catch (SQLException e) {

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

254 CHAPTER 9: DATABASE CONNECTIVITY

Example 9-2. A class to generate an HTML table from a ResultSet using ResultSetMetaData (continued)

out.append ("</TABLE><H1>ERROR:</H1> " + e.getMessage() + "\n");

return out.toString();

}

This example shows how to use two basic methods of ResultSetMetaData:
getColumnCount () and getColumnLabel (). The first returns the number of
columns in the ResultSet, while the second retrieves the name of a particular
column in a result set based on its numerical index. Indexes in ResultSet objects
follow the RDBMS standard rather than the C++/Java standard, which means they
are numbered from 1 to n rather than from 0 to n-1.

This example also uses the getObject () method of ResultSet to retrieve the
value of each column. All of the getXxXX() methods work with column indexes as
well as with column names. Accessing data this way is more efficient, and, with
well-written SQL, is more portable. Here we use getObject().toString()
instead of getString() to simplify the handling of null values, as discussed in
the next section.

Table 9-1 shows the Java methods you can use to retrieve some common SQL data
types from a database. No matter what the type, you can always use the
getObject () method of ResultSet, in which case the type of the object
returned is shown in the second column. You can also use a specific getXXX()
method. These methods are shown in the third column, along with the Java data
types they return. Remember that supported SQL data types vary from database to
database.

Table 9-1. Methods to Retrieve Data from a ResultSet

Java Type Returned by Recommended Alternative

SQL Data Type getObject() to getObject()

CHAR String String getString()

VARCHAR String String getString()

LONGVARCHAR String InputStream
getAsciiStream()
InputStream
getUnicodeStream|()

NUMERIC java.math.BigDecimal java.math.BigDecimal
getBigDecimal ()

DECIMAL java.math.BigDecimal java.math.BigDecimal
getBigDecimal ()

BIT Boolean boolean getBoolean/()

TINYINT Integer byte getByte()

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE JDBC API 255

Table 9-1. Methods to Retrieve Data from a ResultSet (continued)

Java Type Returned by Recommended Alternative
SQL Data Type getObject() to getObject()
SMALLINT Integer short getShort ()
INTEGER Integer int getInt()
BIGINT Long long getLong ()
REATL Float float getFloat()
FLOAT Double double getDouble ()
DOUBLE Double double getDouble ()
BINARY bytel] byte[] getBytes()
VARBINARY bytel] bytel[]l getBytes()
LONGVARBINARY bytel] InputStream
getBinaryStream/()
DATE java.sql.Date java.sql.Date
getDate()
TIME Java.sql.Time java.sql.Time
getTime ()
TIMESTAMP Java.sql.Timestamp java.sql.Timestamp
getTimestamp ()
Handling Null Fields

Handling null database values with JDBC can be a little tricky. (A database field
can be set to null to indicate that no value is present, in much the same way that a
Java object can be set to null.) A method that doesn’t return an object, like
getInt (), has no way of indicating whether a column is null or whether it
contains actual information. (Some drivers return a string that contains the text
"null" when getString() is called on a null column!) Any special value like -1,
might be a legitimate value. Therefore, JDBC includes the wasNull () method in
ResultSet, which returns true or false depending on whether the last column
read was a true database null. This means that you must read data from the
ResultSet into a variable, call wasNull(), and proceed accordingly. It’s not
pretty, but it works. Here’s an example:

int age = rs.getInt("age");
if (!rs.wasNull())
out.println("Age: " + age);

Another way to check for null values is to use the getObject () method. If a
column is null, getObject() always returns null. Compare this to the
getString () method that has been known, in some implementations, to return

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

256 CHAPTER 9: DATABASE CONNECTIVITY

the empty string if a column is null. Using getObject () eliminates the need to
call wasNull () and leads to simpler code.

Updating the Database

Most database-enabled web sites need to do more than just perform queries. When
a client submits an order or provides some kind of information, the data needs to
be entered into the database. When you know you’re executing a SQL UPDATE,
INSERT, or DELETE statement and you know you don’t expect a ResultSet, you
can use the executeUpdate () method of Statement. It returns a count that indi-
cates the number of rows modified by the statement. It’s used like this:

int count =
stmt . executeUpdate ("DELETE FROM CUSTOMERS WHERE CUSTOMER_ID = 5");

If you are executing SQL that may return either a ResultSet or a count (say, if
you're handling user-submitted SQL or building generic data-handling classes),
use the generic execute() method of Statement. It returns a boolean whose
value is true if the SQL statement produced one or more ResultSet objects or
falseifit resulted in an update count:

boolean b = stmt.execute(sql);

The getResultSet () and getUpdateCount () methods of Statement provide
access to the results of the execute () method. Example 9-3 demonstrates the use
of these methods with a new version of HtmlResultSet, named HtmlSQLResult,
that creates an HTML table from any kind of SQL statement.

Example 9-3. A class to generate an HTML table from a ResultSet using the ResultSetMetaData
import java.sql.*;
public class HtmlSQLResult {

private String sql;
private Connection con;

public HtmlSQLResult (String sgl, Connection con) {
this.sql = sql;
this.con = con;

public String toString() { // can be called at most once
StringBuffer out = new StringBuffer();

// Uncomment the following line to display the SQL command at start of table
// out.append("Results of SQL Statement: " + sgl + "<P>\n");

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE JDBC API

257

Example 9-3. A class to generate an HTML table from a ResultSet using the ResultSetMetaData

try {
Statement stmt = con.createStatement () ;

if (stmt.execute(sql)) {
// There's a ResultSet to be had
ResultSet rs = stmt.getResultSet();
out .append ("<TABLE>\n") ;

ResultSetMetaData rsmd = rs.getMetaDatal() ;
int numcols = rsmd.getColumnCount () ;

// Title the table with the result set's column labels
out.append ("<TR>") ;
for (int 1 = 1; i <= numcols; i++)

out.append ("<TH>" + rsmd.getColumnLabel (1)) ;
out.append ("</TR>\n") ;

while(rs.next()) {
out.append("<TR>"); // start a new row
for(int i = 1; i <= numcols; i++) {
out.append("<TD>"); // start a new data element

Object obj = rs.getObject(i);
if (obj != null)
out .append (obj.toString()) ;

else
out.append (" ") ;
}
out.append ("</TR>\n") ;

// End the table
out.append ("</TABLE>\n") ;
}
else {
// There's a count to be had
out.append ("Records Affected: " + stmt.getUpdateCount());

}
catch (SQLException e) {
out.append ("</TABLE><H1>ERROR:</H1> " + e.getMessage());

return out.toString() ;

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

258 CHAPTER 9: DATABASE CONNECTIVITY

This example uses execute () to execute whatever SQL statement is passed to the
HtmlSQIResult constructor. Then, depending on the return value, it either calls
getResultSet () or getUpdateCount (). Note that neither getResultSet () nor
getUpdateCount () should be called more than once per query.

Using Prepared Statements

A PreparedStatement object is like a regular Statement object, in that it can
be used to execute SQL statements. The important difference is that the SQL in a
PreparedStatement is precompiled by the database for faster execution. Once a
PreparedStatement has been compiled, it can still be customized by adjusting
predefined parameters. Prepared statements are useful in applications that have to
run the same general SQL command over and over.

Use the prepareStatement (String) method of Connection to create
PreparedStatement objects. Use the ? character as a placeholder for values to be
substituted later. For example:

PreparedStatement pstmt = con.prepareStatement (
"INSERT INTO ORDERS (ORDER_ID, CUSTOMER_ID, TOTAL) VALUES (?,?2,?)");

// Other code

pstmt .clearParameters () ; // clear any previous parameter values
pstmt.setInt (1, 2); // set ORDER_ID

pstmt.setInt (2, 4); // set CUSTOMER_ID

pstmt.setDouble (3, 53.43); // set TOTAL

pstmt.executeUpdate () ; // execute the stored SQL

The clearParameters() method removes any previously defined parameter
values, while the setXXX() methods are used to assign actual values to each of the
placeholder question marks. Once you have assigned values for all the parame-
ters, call executeUpdate () to execute the PreparedStatement.

The PreparedStatement class has an important application in conjunction with
servlets. When loading user-submitted text into the database using Statement
objects and dynamic SQL, you must be careful not to accidentally introduce any
SQL control characters (such as " or ') without escaping them in the manner
required by your database. With a database like Oracle that surrounds strings with
single quotes, an attempt to insert "John d'Artagan" into the database results in
this corrupted SQL:

INSERT INTO MUSKETEERS (NAME) VALUES ('John d'Artagan')

As you can see, the string terminates twice. One solution is to manually replace the
single quote ' with two single quotes '', the Oracle escape sequence for one

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

REUSING DATABASE OBJECTS 259

single quote. This solution, requires you to escape every character that your data-
base treats as special—not an easy task and not consistent with writing platform-
independent code. A far better solution is to use a PreparedStatement and pass
the string wusing its setString() method, as shown below. The
PreparedStatement automatically escapes the string as necessary for your
database:

PreparedStatement pstmt = con.prepareStatement (
"INSERT INTO MUSKETEERS (NAME) VALUES (?)");

pstmt.setString(l, "John d'Artagan");

pstmt . executeUpdate() ;

Reusing Database Objects

In the introduction, we mentioned that the servlet life cycle allows for extremely
fast database access. After you've used JDBC for a short time, it will become
evident that the major performance bottleneck often comes right at the begin-
ning, when you are opening a database connection. This is rarely a problem for
most applications and applets because they can afford a few seconds to create a
Connection that is used for the life of the program. With servlets this bottle-
neck is more serious because we are creating and tearing down a new Connection
for every page request. Luckily, the servlet life cycle allows us to reuse the same
connection for multiple requests, even concurrent requests, as Connection
objects are required to be thread safe.

Reusing Database Connections

A servlet can create one or more Connection objects in its init () method and
reuse them in its service (), doGet (), and doPost () methods. To demonstrate,
Example 9-4 shows the phone lookup servlet rewritten to create its Connection
object in advance. It also uses the HtmlSQLResult class from Example 9-3 to
display the results. Note that this servlet uses the Sybase JDBC driver.

Example 9-4. An improved directory servlet

import java.io.*;

import java.sql.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class DBPhoneLookupReuse extends HttpServlet {
private Connection con = null;
public void init(ServletConfig config) throws ServletException {

super.init (config) ;
try {

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

260 CHAPTER 9: DATABASE CONNECTIVITY

Example 9-4. An improved directory servlet (continued)

// Load (and therefore register) the Sybase driver
Class. forName ("com. sybase.jdbc.SybDriver") ;
con = DriverManager.getConnection (

"jdbc: sybase:Tds:dbhost:7678", "user", "passwd");

}
catch (ClassNotFoundException e) {
throw new UnavailableException(this, "Couldn't load database driver");

}
catch (SQLException e) {
throw new UnavailableException(this, "Couldn't get db connection");

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.s